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1. Introduction 
Fluid dynamics encompasses a broad range of phenomena 
critical to understanding various natural and engineered 
systems. Among these, the behavior of fluids around solid 
objects and within droplets presents fundamental challenges 
and opportunities for analysis. In this paper, we delve into 
two distinct yet interconnected problems in fluid dynamics: 
the flow of a Newtonian fluid past a stationary solid sphere 
and the motion of a fluid droplet falling through a 
surrounding Newtonian fluid. 
 
The flow past a solid sphere serves as a classic benchmark 
problem, offering insights into the intricate interactions 
between a fluid and a solid object. By examining quantities 
such as normalized tangential velocity, pressure difference, 
and shear stress as functions of distance from the sphere's 
center, we gain valuable understanding of the flow 
characteristics and their spatial distribution. Moreover, 
identifying the locations of maximum fluid pressure and 

maximum shear stress provides crucial insights into the 
underlying dynamics. 
 
Transitioning to the motion of a fluid droplet falling through 
a surrounding fluid, we employ the stream function 
approach—a powerful tool for simplifying the Navier-Stokes 
equations and solving complex fluid flow problems. By 
defining appropriate stream functions for both the droplet 
and the surrounding fluid, we explore the velocity field and 
derive boundary conditions based on key assumptions 
regarding fluid behavior. Through this analysis, we 
determine the total drag experienced by the droplet, 
comprising both forms drag and viscous drag components. 
 
Beyond elucidating the mechanics of fluid flow, our 
investigation extends to practical applications, offering 
insights relevant to diverse fields such as engineering, 
physics, and environmental science. By comprehensively 
addressing these fluid dynamics problems, we contribute to 
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This paper investigates two fundamental fluid dynamics problems: the flow of a 
Newtonian fluid past a stationary solid sphere and the motion of a fluid droplet falling 
through a surrounding Newtonian fluid. For the flow past a sphere, various quantities 
such as normalized tangential velocity, pressure difference, and shear stress are plotted 
as functions of normalized distance from the sphere's center. The locations of maximum 
fluid pressure and maximum shear stress are determined. The second part of the paper 
employs the stream function approach to solve for the velocity field around the falling 
droplet. Assumptions are made regarding fluid behavior and boundary conditions are 
derived. The total drags on the droplet, including form drag and viscous drag, is 
evaluated. The plausibility of the results is tested, and the state of the fluid inside the 
droplet is determined. Additionally, an estimation of the total drags on a gas bubble rising 
in a liquid is provided. This analysis provides insights into complex fluid flow phenomena 
with implications for various engineering and scientific applications.  
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the foundational knowledge base essential for tackling real-
world challenges and advancing technological innovation. 
 
This paper embarks on a journey through the intricate world 
of fluid dynamics, uncovering the underlying principles 
governing the flow around solid spheres and falling droplets. 
Through meticulous analysis and interpretation, we aim to 
shed light on these complex phenomena and their 
significance in understanding and manipulating fluid 
behavior. 
 
2. Previous Works  
Batchelor's seminal work (Batchelor, 1970) serves as a 
cornerstone in the field of fluid dynamics, particularly in 
understanding the behavior of viscous fluids around slender 
bodies such as solid spheres. In this study, Batchelor develops 
a comprehensive theoretical framework that elucidates the 
intricate fluid-solid interactions occurring in low Reynolds 
number regimes. By considering the fundamental principles 
of fluid mechanics and employing mathematical techniques, 
Batchelor formulates equations that describe the flow field 
around stationary objects with remarkable precision. 
 
One of the primary contributions of Batchelor's work is the 
development of slender-body theory, which provides a 
systematic approach for analyzing fluid flow past elongated 
structures. By treating the solid sphere as a simplified 
geometric object, Batchelor derives analytical expressions for 
velocity profiles, pressure distributions, and shear stress 
patterns in the vicinity of the sphere. This analytical 
framework not only enables a deeper understanding of the 
underlying physics but also facilitates quantitative 
predictions of fluid behavior under different conditions.  
 
Furthermore, Batchelor's study lays the foundation for 
subsequent analyses of fluid dynamics around stationary 
objects by establishing key theoretical concepts and 
methodologies. Researchers have built upon Batchelor's 
framework to investigate a wide range of phenomena, 
including the drag force experienced by solid spheres, the 
formation of boundary layers, and the development of flow 
instabilities. Batchelor's insights have thus significantly 
influenced the trajectory of research in fluid dynamics, 
shaping our understanding of fluid-solid interactions at small 
scales. 
 
Batchelor's seminal work provides a robust theoretical 
foundation for studying the flow of viscous fluids around 
slender bodies, particularly solid spheres. By establishing 
fundamental principles and analytical techniques, Batchelor's 
contributions have paved the way for advancements in 
understanding fluid dynamics in various contexts, from 
biological systems to engineering applications. 
 
Recent studies have extensively investigated pressure 
distribution dynamics within pore throats, with the aim of 
elucidating the fundamental mechanisms governing fluid 
flow in porous media. For instance, Alagoz and Giozza 
(2023) conducted a sensitivity analysis on bottomhole 
pressure calculations in two-phase wells, providing valuable 
insights into the factors influencing pressure dynamics within 
such systems (Alagoz and Giozza, 2023). Furthermore, 

research efforts by Alagoz et al. (2023) have focused on 
developing computational tools for analyzing wellbore 
stability, thereby contributing to a deeper understanding of 
pressure behavior in complex geological formations (Alagoz 
et al., 2023). These investigations have laid a solid foundation 
for comprehending pressure dynamics in pore throats and 
have paved the way for further exploration in this field. 
 
Jeffrey's study (Jeffrey, 1922) is centered on examining the 
motion of ellipsoidal particles within viscous fluids, offering 
key insights into the dynamics of non-spherical objects. 
Despite being conducted before the advent of modern 
computational techniques, the analytical framework 
employed in the research remains influential in 
understanding the fundamental principles governing fluid-
solid interactions. 
 
The research conducted by Alagoz et al. (2023) serves as a 
notable demonstration of the practical application of 
computational methods in the analysis of pressure dynamics 
and their significant implications for various industrial 
processes (Alagoz 2023). Through their meticulous 
investigations, Alagoz and colleagues leverage advanced 
computational tools to delve into the intricate mechanisms 
underlying pressure behavior in complex systems. By 
integrating computational simulations with empirical data 
and theoretical models, their work provides valuable insights 
into the dynamic interplay between fluid flow, pore structure, 
and rock properties.  
 
Saffman's investigation (Saffman, 1965) focuses on analyzing 
the lift force encountered by small spheres subjected to slow 
shear flows, thereby emphasizing the significant role of shear-
induced effects on particle motion. By exploring this 
phenomenon, the study makes a notable contribution to our 
comprehension of fluid-solid interactions, particularly within 
low Reynolds number regimes. 
 
Oesterlé's research (Oesterlé, 1984) delves into the drag 
experienced by a solid sphere in linear shear flows, offering 
analytical expressions to quantify drag coefficients across 
different scenarios. By systematically examining the 
relationship between drag force and fluid velocity gradients, 
the study provides valuable insights into the intricate 
dependencies shaping fluid-solid interactions. 
 
Leal's study (Leal, 1980) delves into the motion of slender 
rod-like particles within second-order fluids, expanding the 
scope of analysis beyond traditional Newtonian fluids to 
encompass non-Newtonian behaviors. By venturing into this 
domain, the research extends our comprehension of fluid 
dynamics around complex-shaped objects, offering valuable 
insights into the diverse range of phenomena encountered in 
real-world fluid-solid interactions. 
 
3. Flow Characteristics Around a Stationary Solid Sphere  
In the first part of this paper, we delve into the intricate 
dynamics of fluid flow around a stationary solid sphere. 
Understanding the behavior of fluids in the vicinity of solid 
objects is essential in various scientific and engineering 
applications, ranging from environmental processes to 
industrial processes. The flow past a solid sphere serves as a 
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canonical problem in fluid dynamics, offering valuable 
insights into the fundamental principles governing fluid-solid 
interactions. By examining key quantities such as normalized 
tangential velocity, pressure difference, and shear stress as 
functions of distance from the sphere's center, we aim to 
unravel the complexities of fluid flow in this regime.  
 
Moreover, identifying critical parameters such as the 
locations of maximum fluid pressure and maximum shear 
stress provides crucial information for designing efficient 
systems and predicting flow behavior. Through a systematic 
analysis of flow characteristics around a stationary solid 
sphere, we lay the groundwork for understanding more 
complex fluid-solid interactions and their implications in 
practical scenarios. 
 
The tangential velocity we get is 
 

3
3 1

1 sin
4 4

R R
v v

r r 

                
 (1) 

 
The normalized tangential velocity (Fig. 1) is 
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Fig. 1. The normalized velocity versus theta 
 
 
 

The pressure we get is 
 

2

0

3
cos

2

v R
p p

R r

       
  

 (3) 

 
The normalized pressure (Fig. 2) is 
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Fig. 2. The normalized pressure versus theta 
 
 
 

The sheer stress we get is 
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The normalized sheer stress (Fig. 3) is 
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Fig. 3. The normalized sheer stress versus theta 
 
 
 

The maximum fluid pressure occurs at (r/R)=1 and 
,     . The minimum fluid pressure occurs at (r/R)=1 

and 0  . The maximum shear stress occurs at (r/R)=1 
and / 2   . The normalized pressure is 
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When it is smaller than 0.01, it means than the maximum 
value of this expression is smaller than 0.01, that is 
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 (7) 

 
Therefore, we can estimate that r > 12.25 R. The normalized 
shear stress is 
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When it is smaller than 0.01, it means than the maximum 
value of this expression is smaller than 0.01, that is 
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4. Fluid Dynamics of Falling Droplets: Stream Function 
Approach 
In the second part of this paper, we shift our focus to the 
dynamics of falling droplets within a surrounding Newtonian 
fluid. Droplet dynamics play a significant role in various 
natural and industrial processes, from rain formation in 
atmospheric science to emulsion stability in chemical 
engineering. Understanding the motion of droplets in fluid 
environments is essential for optimizing processes such as 
spray coating, inkjet printing, and combustion. In this 
section, we employ the stream function approach—an 
effective mathematical tool for solving fluid flow problems—
to analyze the velocity field around falling droplets. By 
defining appropriate stream functions for both the droplet 
and the surrounding fluid and making key assumptions 
regarding fluid behavior, we aim to elucidate the complex 
dynamics governing droplet motion. Through a systematic 
investigation of drag forces, boundary conditions, and fluid 
behavior, we seek to provide insights into the total drag 
experienced by the droplet and its implications for various 
industrial applications. By combining theoretical analysis 
with practical considerations, this section contributes to a 
deeper understanding of droplet dynamics and lays the 
foundation for further research in this area. 
 
The boundary conditions are listed below. 
 

, coso
rr v v    (10) 

 

0i o
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The no-penetration condition. 
 

i o
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Velocities of  different fluids are continuous at the liquid 
interface. 
 

i o
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  (13) 

The sheer stresses of  different fluids are the same at the liquid 
interface. 
 
Assuming that both the stream functions for liquid in the 
droplet and out of  the droplet have the same form, so that the 
stream function can be written as; 
 

 
 

4 2 1 2

4 2 1 2

sin

sin

i i i i i

o o o o o

A r B r C r D r

A r B r C r D r

 

 





   

   
 (14) 

 
For stream function outside the droplet, when,  
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o  can be rewritten as 
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For stream function inside the droplet, when 0r  , i
rv  

cannot be infinite. 
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So that 0i iC D   
i can be rewritten as 
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We rename the constants to A, B, C, D. By using the no-
penetration condition, we can get that 
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So that 
 

 
(22) 
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Substituting these results into iv and ov , we get 
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The velocity along the liquid interface is continuous, which 
indicates that 
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The stresses at both sides of  the interface at r = R are the same, 
which indicates 
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Because rv  remain zero even when we change the   
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Solving Equation 30 and Equations 31, we have 
 

2

3

1 1

4 1
1 1

4 1
1 2 3

4 1
1

4 1

v
A

G R

B v
G
G

C Rv
G
G

D R v
G


























 
(32) 

where; 0/iG   . Substituting A, B, C and D into the 

expression of  i and o , we have 
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The drag force can be derived as follows. 

 
Stocks Equation: 
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The pressure distribution in the outer liquid is 
 

2

0

cos2 3

1 2

o vG R
p p

G R r
          

   (39) 

 
Where p0 is the pressure at infinite. Total normal force on 
sphere is equal to 
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The form drag can be integrated  
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The viscosity drag can be calculated as 
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The total viscosity drag force is 
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The total drag force is 
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when 0/i    
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Which is the same with the solution in BSL. As we can see 
from  
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Then we can get 
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Which are not 0; therefore, the fluid in the droplet is moving. 

The total drags when G= 0/ 0i    is that 
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Therefore, we can estimate that r > 3.50 R. 
 
5. Conclusion 
In conclusion, this paper has explored two fundamental 
aspects of fluid dynamics: the flow characteristics around a 
stationary solid sphere and the dynamics of falling droplets 
within a surrounding fluid. Through systematic analysis and 
theoretical modeling, we have gained valuable insights into 

the intricate phenomena governing fluid-solid interactions 
and droplet motion. 
 
In the first part of the paper, we investigated the flow past a 
solid sphere, examining quantities such as normalized 
tangential velocity, pressure difference, and shear stress as 
functions of distance from the sphere's center. By identifying 
critical parameters such as the locations of maximum fluid 
pressure and maximum shear stress, we have enhanced our 
understanding of fluid flow around stationary objects and its 
implications for various engineering and scientific 
applications. 
 
Transitioning to the second part, we applied the stream 
function approach to analyze the velocity field around falling 
droplets within a Newtonian fluid. By defining appropriate 
stream functions and making key assumptions regarding 
fluid behavior, we elucidated the complex dynamics 
governing droplet motion and calculated the total drag 
experienced by the droplet. Our findings provide insights into 
optimizing processes such as spray coating, inkjet printing, 
and combustion, where droplet dynamics play a crucial role. 
 
Overall, this paper contributes to the broader body of 
knowledge in fluid dynamics by providing a comprehensive 
analysis of fluid-solid interactions and droplet motion. By 
combining theoretical analysis with practical considerations, 
we have advanced our understanding of fundamental fluid 
dynamics phenomena and laid the groundwork for further 
research in this area. Moving forward, continued exploration 
of these topics holds promise for addressing real-world 
challenges and driving innovation across various scientific 
and engineering disciplines. 
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