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1. Introduction 
Climate change is accelerating from time to time over the 
earth’s surface due to increasing human activities. The 
change in climatic variables can occur in different ways, on 
different time scales and on different geographical scales due 
to internal and external forcing (Boru et al., 2019). Climate 
change is recognized worldwide as one of the most important 
environmental problems of the 21st century (Andrade et al., 
2021). However, the impacts of climate change were severe 
in developing countries where the livelihood of the 
community is highly vulnerable to the risks of climate 
change. Changes in climate will affect human wellbeing by 
altering water availability, land-use management, and food 
production (Marin et al., 2020) and can further intensify the 
spatial and temporal variation of water resources through 
alteration of hydrological cycle (Bekele et al., 2019). The 

anticipated increase in global and regional temperatures due 
to climate change is expected to increase the 
evapotranspiration rate and change precipitation pattern 
contributing to changes in the characteristics of droughts and 
flood (Musie et al., 2020). Climate change leads to changes 
in precipitation and temperature, which have corresponding 
effects on river flow and sediment transport in a river basin 
(Ma et al., 2021). 
 
Assessing the impacts of climate change is a current global 
and regional issue. Global surface temperatures show an 
increasing trend, and precipitation pattern variability is 
dynamic both spatially and temporally (Bhatta et al., 2019). 
According to the report of the Intergovernmental Panel on 
Climate Change (IPCC, 2007), all assessed emission 
scenarios project rising surface temperatures during the 21st 
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Ethiopia is experiencing an increasing water security risk owing to a climate change,
which caused frequent draught and flooding. The increase in temperature and
precipitation variability has reduced streamflow amplifying water security problems.
However, evaluation of how the long-term streamflow behaves under the future climate
change in the catchment are limited. Thus, the purpose of this study was to investigate
the impacts of climate change on streamflow of Sululta catchment using Soil and Water
Assessment Tool (SWAT) model under the RCP4.5 and RCP8.5 climate scenarios.
Precipitation and temperature outputs from Rossby Center Regional Atmospheric model
(RCA4) regional climate model (RCM) was bias corrected against observed data using
Power transformation and variance scaling, respectively. The SWAT model was
calibrated and validated using observed stream flow. The performance of SWAT model
in streamflow simulation showed a good agreement with R2 0.75 and 0.7 and NSE 0.71
and 0.7 during calibration and validation respectively.  The projection of climate change
shows precipitation decreases in dry season whereas temperature increases under both
RCP4.5 and RCP8.5 scenarios. The simulation of streamflow shows that, mean annual
stream flow will be increased by 11.91% in 2021s (2021-2050) and by 5.26% in 2051s 
(2051-2080) under RCP4.5. Under RCP8.5 climate scenarios, the mean annual
streamflow will be decreased by 0.98% in 2021s and 1.43% in 2051s. The outcomes
suggest that it is important to consider the influence of climate change on streamflow to
frame appropriate guidelines for planning and management. 
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century. More frequent and prolonged heatwaves are very 
likely, and extreme precipitation events will become more 
intense and frequent in many regions. The oceans will 
continue to warm and acidify, and global mean sea level will 
rise. According to this report (IPCC, 2007), the global mean 
surface temperature changes for the period 2016-2035 is 
likely to be in the range of 0.3 °C to 0.7 °C (medium 
confidence level). Compared to 1850-1900, the change in 
Earth's surface temperature is expected to exceed 1.5 °C by 
the end of the 21st century (2081-2100) (high confidence). The 
main cause of global climate change is greenhouse gas 
(GHG) emissions such as CO2, CH4, N2O, which cause 
global warming (IPCC, 2013).  
 
Human activities through the burning of fossil fuels, 
industrial production processes, agriculture and forestry, 
human society, and the use of vehicles are sources of 
increased GHG emissions (Hussain et al., 2018). Global 
warming due to increased greenhouse gas concentrations 
could reduce water security in the near future due to the 
expected decrease in rainfall, surface runoff, and actual 
evapotranspiration (Andrade et al.,2021). Global climate 
change has significant effects on the hydrological cycle and 
has the potential to impose additional pressures on water 
availability and water demand (Adem et al., 2016). 
 
Climate change is expected to have a negative effect on 
economic development around the world, but the magnitude 
of the impact will vary from country to country. Developing 
countries like Ethiopia are becoming more vulnerable to 
climate change, which can have widespread impacts on the 
country for many reasons. Most notably, its economy is 
heavily dependent on agriculture (IPCC, 2007). A large part 
of the country is arid, semiarid, and very prone to 
desertification and drought. Rain-dominated agricultural 
systems are strongly affected by regional climate change. 
Drought events of the recent decades have demonstrated the 
country’s vulnerability to global climate change, which is 
expected to exacerbate climate variability in the region 
(Musie et al., 2020). Climate change and its effects are 
therefore a concern for Ethiopia. 
 
Blue Nile Basin or Abay Basin is one of the largest basins in 
Ethiopia with high population pressure, degradation of land 
and highly dependent on an agricultural economy and 
sensitive to climatic variations that affects streamflow 
(Ayalew et al., 2021). The increase in population growth, 
economic development, and climate change have been 
proven by IPCC (2007) to cause rise in water demand, 
drought or water scarcity. The limited water availability and 
the increasing demand for water from different sectors could 
contribute to the vulnerability of the Basin to water stress as 
the climate changes (Mengistu et al., 2021).  The large 
population growth will increase the demand for natural 
resources; mainly water in the basin. Sululta Catchment is 
one of the catchment in the Upper Blue Nile Basin, which 
experiences famine due to recurrent drought, and the lack of 
advanced water infrastructure to use the full potential of 
available water resources.  
 
Evaluation of the impact of climate change on streamflow in 
the catchment are limited or not addressed. Water resources 

planning and management in the 21st century is becoming 
difficult due to the conflicting demands from various 
stakeholder groups, increasing population, rapid 
urbanization, climate change producing shifts in hydrologic 
cycles, and the increasing incidences of natural disasters 
(IPCC, 2007). Sululta Catchment has observed notable 
spatial expansion, population growth and urbanization. 
Human activities in the catchment have increased over the 
past century and expected to grow even more rapidly in the 
future; hence, water management will become even more 
important with a changing climate. 
 
In this study, climatic information from the Representative 
Concentration Pathways (RCPs) is used to predict future 
hydrological changes from Rossby Center Regional 
Atmospheric Model (RCA4) climate model. The RCA4 
model is advanced from High Resolution Limited Area 
Model (HIRLAM), which is a numerical weather prediction 
(NWP) forecasting system, resulting into enhanced physical 
and dynamical parameterization (Ayugi et al.,2020).  
 
Based on Coupled Model, the RCA4 model has been applied 
in many regions worldwide, among them (Nikulin et al., 
2018; Wu et al., 2016; Collazo et al., 2018; Wu et al., 2017; 
Rana et al., 2020). Based on Coupled Models Inter-
comparison Project phase 5 (CMIP5) which provides the 
most recent simulated dataset for future climate change 
scenarios, the IPCC has defined new RCP scenarios for 
climate change projection (van Vuuren et al., 2011). RCPs 
were developed based on varying assumptions of future 
greenhouse gas emissions. The RCP uses radiative forcing 
values ranging from 2.6 to 8.5 W/m2 in 2100 to define 
scenarios. The RCPs are a vital development in climate 
research and allow scientists to examine emission mitigation 
and impact analysis (Bai et al., 2019). 
 
There are many hydrological models to understand the 
effects of climate change on the nature of hydrological flow 
and to calculate water discharge more precisely, simply and 
quickly than the traditional measurement method. The Soil 
and Water Assessment Tool (SWAT) is one of the most 
popular modelling programs for assessing hydrological 
impacts. The objective of this study was to assess the 
potential impacts of climate change in the Sululta Catchment 
using a Soil and Water Assessment Tool (SWAT) and 
Coordinated Regional Climate Downscaling Experiment 
over the African domain (CORDEX-Africa) Regional 
Climate Model (RCM) under RCP climate scenarios RCP4.5 
and RCP8.5. 
 
2. Materials and Methods 
2.1. Study Area 
Sululta Catchment is located in the northern part of Addis 
Ababa and south of Chancho Town. The Catchment Covers 
an Area of 467 km2. It is enclosed within the geographical 
coordinate of 9°05’01’’N-9°18’45’’N latitude and 
38°33’15’’E-38°50’45’’E longitude. With respect to the main 
asphalt road that connects Gojjam with Addis Ababa, more 
proportion of the catchment lay in the western part and the 
rest in east direction longitudinally. The peak altitude is 
estimated to be about 3380 m at Ilani Welebabo Ridge and 
the lowest is 2542m above sea level at the mouse of the basin 
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(Sibilu River). The Sibilu River meanders in the flat 
topography of Sibilu plain. Sibilu River is the tributary of 

Muger River, which is one of the main tributaries of Abbay 
Basin (Fig. 1).    

 
 
 

 
 

Fig. 1. Study area map 
 
 
 

2.2. Soil and Water Assessment Tool (SWAT) Model 
The SWAT model is a semi-distributed continuous 
hydrologic model operated in a Geographic Information 
System (GIS) environment (Arnold et al., 2012). SWAT 
model is developed to predict the impact of land management 
practices on water, sediment and agricultural chemical yields 
in large complex watersheds with varying soils, land use and 
management conditions over long periods of time  (Neitsch 
et al., 2005) and it is computationally efficient, uses readily 
available inputs and enables users to study long-term 
impacts.  
 
Hydrology, plant growth, reservoir routing, land 
management, pesticides, and sediments are the major 
modules included in the SWAT model. Due to its user-
friendly interface (ArcSWAT) and data requirement 
flexibility, SWAT has been widely used for impact 
assessment of climate, land use, and management practices 

(Bhatta et al., 2019). A SWAT model operating at daily time 
steps predicts land management impacts in large, complex 
watersheds with varying soil, land use, and management 
conditions. Key model components include DEM, 
meteorology, hydrology, soils and properties, and land 
management (Neitsch et al., 2011).  
 
In SWAT, watersheds are divided into multiple sub-
watersheds, which are then further divided into Hydrological 
Response Units (HRUs), which include uniform land use, 
slopes and soil properties. The hydrological component of 
the model is based on the water balance equation (Neitsch et 
al., 2011) given by Equation 1 below. Currently SWAT is 
imbedded in Arc GIS interface called Arc SWAT and for this 
study, ArcSWAT2012 is used. 
 

SWt = SWo+∑ ሺ𝑅ௗ௔௬ି
௧
௜ୀଵ 𝑄௦௨௥௙ି𝐸௔ି𝑊௦௘௘௣ି𝑄௚௪ሻ (1) 
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where SWt is the final soil water content in mm H2O, SW0 is 
the initial soil water content on day i in mm H2O, t is the time 
of days, Rday is the amount of precipitation on day i in mm 
H2O, Qsurf is the amount of surface runoff on day i in mm H2O, 
Ea is the amount of evapotranspiration on day i in mm H2O, 
Wseep is the amount of water entering the vadose zone from 
soil profile on day i in mm H2O and Qgw is the amount of 
return flow on the day i in mm. 
 
Precipitation, maximum and minimum temperatures, solar 
radiation, relative humidity, and wind speed are the daily 
values required for the SWAT model. They can be given to 
the model as a user defined measured time series, or they can 
be generated within SWAT from a monthly data and its 
statistics summarized over years. SWAT includes WXGEN 
model weather generator that can generate the above stated 
data or fill in gaps in measured record. The interior model is 
based on the contiguous U.S. states. However, it can be 
localized by providing a custom database (Neitsch et al., 
2005). 
 
2.3. SWAT Model Input Data 
The necessary input data required for the SWAT model were 
DEM, land use/cover, soil data, meteorological data 
(precipitation, temperature, solar radiation, relative 
humidity, and wind speed) and hydrological data (stream 
flow and sediment yield) which were collated from different 
sources or institutions. 
 
2.3.1. DEM 
A DEM is a digital representation of a terrain surface, 
specifically grid or regular grid of point elevations. This is the 
basic input for the hydrological SWAT model to delineate 
watersheds and stream networks. The first step in creating the 
model input is the watershed delineation created using digital 
elevation data. A DEM is the first input to the SWAT model 
for delineating the watershed to be modeled. Based on the 
threshold specifications and the DEM, the SWAT Arc View 
interface was used to divide the watersheds into sub basins 
and divide sub basins into Hydrologic Response Units 
(HRUs). Shuttle radar topographic mission (SRTM) provides 
the DEM data having a 30 m resolution. The DEM 
downloaded from SRTM website has projection system of 
WGS 1984 UTM, zone 37N at 30m resolution. The DEM 
data for this Study was obtained from 
(www.earthexplorer.usgs.gov). 
 
2.3.2. Land Use /Land Cover and Soil Data  
SWAT requires the land use /land cover data to define the 
HRUs. The land use land cover map of the study area was 
obtained from the Ministry of Water, Irrigation and 
Electricity (MoWIE) GIS department. Based on this data, a 
SWAT land use/ land cover map was created by overlaying 
the land use/land cover shape file. Then, after major land 
use/ land cover classification was divided into subclasses 
mainly based on the dominant crops for cultivated land. 
SWAT then calculated the area covered by each land use.  
 
It was found that 33.16% was cultivated land, 19.81% was 
eucalyptus forest, 38.89% was grassland, and 8.08% was 
shrub land. SWAT requires a variety of soil textural and 
physico-chemical properties such as the hydraulic 

conductivity, moisture content availability, physical 
properties, bulk density, chemical composition, organic 
carbon content and texture, for the different layers of each 
specific soil type. This soil data required by SWAT for soil 
database as per FAO soil group is obtained from the Ministry 
of Water, Irrigation and Electricity. The major soils in the 
study area are Chromic Luvisols (3.86%), Eutric Cambisols 
(28.77%), Eutric Leptosols (5.99%) and EutricVertisols 
(61.38%). The dominant soil type in the catchment is Eutric 
Vertisols, accounting for 61.38% of the land area.  
 
2.3.3. Observed Meteorological and Stream Flow Data 
The meteorological data Such as daily precipitation, 
maximum and minimum temperature, sunshine hour data, 
relative humidity, and wind speed data were collected from 
the Ethiopian National Meteorology Service Agency. These 
data were used as the input to the SWAT hydrological model 
for the simulation of the hydrological components. To 
perform hydrological analysis and simulation using data of 
long time series, filling in missing data is very important. The 
missing data can be completed using meteorological and /or 
hydrological stations located in the nearby, provided that the 
stations are located in hydrological homogeneous region.  
 
In order to fill the missing observed rainfall and temperature 
data, joint application of the regression analysis and spatial 
interpolation techniques are used to complete short and long 
period breaks in data series for a given meteorological station. 
Such gaps in the record are filled by developing correlations 
between the station with missing data and any of the adjacent 
stations with the same hydrological features and common 
data periods.  
 
In this study missing of observed rain rainfall and 
Temperature values were estimated using XLSTAT2018 by 
filling each from its neighboring stations. Data consistency 
was also checked by a double mass curve and found to be 
consistent. In this study only one station has full data. This 
station is Addis Ababa Observatory meteorological station. 
Using this station, the SWAT model generates representative 
weather variables for Sululta Catchment.  
 
In this study, three stations were used to run the SWAT 
model. From this three stations only one of them is with full 
of data. Therefore, from this one station weather is generated 
for the rest of missing stations using the automatic weather 
data generator. Stream flow data were collected from 
MoWIE. This data is required for SWAT model calibration 
and validation. 
 
2.3.4. Climate Change Scenario Data  
CORDEX is a global collaborative initiative that aims to 
develop the knowledge of regional downscaling of global 
climate scenarios, and provide and develop detailed, regional 
climate information necessary for vulnerability, impact, and 
adaptation studies at local and regional levels (Obahoundje 
et al., 2021).  
 
The future Scenarios were based on Representative 
Concentration Pathways (RCPs) radiative forcing (IPCC, 
2014).  RCPs are new climate scenarios based on emission 
pathways and greenhouse gas concentrations (Vaighan et al., 
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2019). RCPs explore credible future options by considering 
the uncertainties associated with future developments 
(Doulabian et al., 2021). Representative Concentration 
Pathways represent pathways of radiative forcing, not linked 
with exclusive socio-economic assumption in contrary to the 
Special Report on Emission Scenarios (SRES) (Abera et al., 
2018).  
 
Results of CORDEX-Africa RCM simulations for the 
historical and future (2021–2080) climate projections under 
RCP4.5 and RCP8.5 with spatial resolution of 0.44° were 
used in this study. CORDEX-Africa gives priority to RCP4.5 
and RCP8.5 scenarios, so RCP4.5 and RCP8.5 were 
considered in this study (Alemseged and Tom, 2015).  
 
RCP4.5 is an intermediate-range scenario that stabilizes the 
radiative forcing at 4.5 W/m2 (approximately 650 ppm CO2 

equivalent) in 2100 and does not exceed this value, although 
this is due to the stable climate system (Riahi et al., 2011; van 
Vuuren et al., 2011). RCP8.5 is the upper bound for all RCP 
scenarios, stabilizing radiative forcing at 8.5 W/m2 (greater 
than 1370 ppm CO2 equivalent) in the year 2100 (Riahi et al., 
2011).  
 
RCM climate data outputs based on RCP 4.5 and RCP 8.5 
emissions scenarios are bias corrected for application to 
hydrological SWAT model for climate change impact 
studies. Bias corrections were considered for precipitation 
and minimum and maximum temperatures. Other 
meteorological variables such as solar radiation, relative 
humidity and wind speed during the base period were 
considered in the future scenarios without making any 
change as the changes in these variables may not have a 
significant impact in modelling the climate change scenarios 
on local hydrology (Galata et al., 2021).  
 
This study used the Rossby Center Regional Atmospheric 
Model (RCA4) regional climate model obtained from 
(https://climate4impact.eu/impactportal/data/esgfsearch.jsp). 
Compared to the previous version, RCA4 is more physically 
consistent with improved energy flux parameterization, 
reduced compensating error, and better representation of the 
diurnal temperature cycle (Boru et al., 2019). Spatially, the 
RCA4 simulations cover the CORDEX-Africa domain over 
the period  1951–2100 with a resolution of  0.44° × 0.44° 
(~50km × 50km) (Alemseged&Tom,2015).  
 
2.4. Bias Correction of Climate Model Data  
Several bias correction methods are applicable to account for 
differences between the climate model data and the measured 
data (Teutschbein et al ., 2011).  Often the downscaled RCPs 
data (RCP4.5 and RCP8.5) cannot be directly used for 
impact assessment as the computed variables may differ 
systematically from the observed ones. Bias correction is 
therefore applied to RCM/GCM data for climate change 
analysis since the data extracted from the climate models 
contains bias when compared to observed climate data 
(Teutschbein and Seibert, 2012).  
 
In this study bias correction was carried out for precipitation 
and temperature by the method of power transformation 
(Equation 2) and variance scaling (Equation 3), respectively. 

From this, the comparison of the generated projection data 
with respect to the observed analyzed climate data (base 
period data) resulted in producing a similar pattern for 
Sululta catchment. The study by Teklay et al. (2021) also 
applied power transformation and variance scaling bias 
correction methods for precipitation and temperature, 
respectively. The power transformation and variance scaling 
can be defined as: 
 

𝑃௖௢௥ ൌ  𝑎 ∗ 𝑃௨௡௖
௕    (2) 

 

𝑇ௌ௖௢௥ ൌ  𝑇ത௢௕௦ ൅
ௌௗ೚್ೞ

ௌௗ೘೚೏
ሺ𝑇௠௢ௗ െ 𝑇ത௠௢ௗ ሻ    (3) 

  
where; 𝑃௖௢௥ and 𝑃௨௡௖are the corrected and uncorrected daily 
precipitation, and a and b are the transformation coefficients 
and 𝑇ௌ௖௢௥ is the corrected temperature in the scenario period, 
𝑇ത௢௕௦ is the observed mean, 𝑆𝑑௢௕௦and 𝑆𝑑௠௢ௗ are the observed 
and model standard deviation, respectively, 𝑇௠௢ௗ and 𝑇ത௠௢ௗ   
are model and model mean temperature value, respectively 
(Gadissa et al., 2018). 
 
2.5. SWAT Model Set Up 
The SWAT model was developed to predict the impacts of 
land use and management on water, sediment and 
agricultural chemical yields at catchment scale at daily, 
monthly and annual time increments (DosSantos et al., 
2018). Spatial data such as land use, soil, and slope were used 
to create various hydrologic response units (HRUs) analysis 
systems.  
 
In the SWAT model, the simulation of the hydrological 
process begins with watershed delineation from a DEM. 
Inputs entered into the SWAT model were organized to have 
spatial properties. Before going in hand with spatial input 
data, that is, the soil map, LULC map and the DEM were 
projected into the same projection called UTM Zone 37N, 
which is projection parameter for Ethiopia.  
 
Watershed was divided into a several sub-basins, for 
modeling purposes. The watershed delineation process 
includes five main steps, DEM setup, river definition, outlet 
and inlet definition, watershed outlets selection and 
definition and calculation of sub-basin parameters. The river 
definition used a threshold-based river definition option to 
define the minimum size of the sub-basins. In SWAT, the 
basin is divided into sub-basins comprising a river segment 
and hydrological response units (HRUs), which represent 
areas of homogeneous land use, topography, and soil 
characteristics (Gassman et al., 2007). 
 
The delineated Watershed by Arc SWAT and the prepared 
land cover and soil layers were overlap 100%. In addition to 
land use and soil, SWAT includes subdivision of HRU by 
slope class. A multi-slope option (an option which considers 
different slope classes for HRU definition) was chosen. 
LULC, soil, and slope maps have been reclassified to match 
SWAT database parameters. After reclassifying the land use, 
soil and slope in the SWAT database of these physical 
properties were overlaid for HRU definition. In this 
particular study, a 10% land use threshold was used to 
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include all land uses, 20% for soil and 20% for slope were 
used. The HRU distribution in this study was determined by 
assigning multiple HRUs to each sub-basin. 
 
2.6. Sensitivity Analysis, Calibration and Validation of SWAT 
Model 
Determining the most sensitive parameters was an important 
first step in model calibration and validation. Sensitivity 
analysis is the process of determining the rate of change in 
model output to changes in model inputs (parameters) 
(Moriasi et al., 2007).The process required to identify the key 
parameters and parameter accuracies required for SWAT 
model calibration and validation. SWAT has a large number 
of flow parameters, so the most sensitive parameters must be 
identified to improve the calibration of the hydrological 
model.   
 
After a thorough pre-processing of the required input for 
SWAT 2012 model, flow simulation was performed for a 
thirty year of recording periods starting from 1987 through 
2016. The first three years of which was used as a warm up 
period and the simulation was then used for sensitivity 
analysis of hydrologic parameters and for calibration of the 
model.  
 
Sensitivity analysis, calibration, and validation were 
performed using the SWAT-CUP (Abbaspour, 2014), which 
utilizes the Sequential Uncertainty Fitting (SUFI-2) 
algorithm. The SUFI-2 algorithm is widely used as tool 
combined tool for SWAT model calibration and uncertainty 
analysis. It accounts for uncertainties due to uncertainties in 
driving variables (such as precipitation), conceptual models, 
parameters, and measured data (Abbaspour, 2014). In the 
SWAT-CUP, parameter sensitivity analysis can be 
performed in two ways: Global sensitivity analysis, which 
allows changing each parameter at a time, and one-at-a time 
sensitivity analysis, which performs one parameter at a time 
only (Arnold et al., 2012). To perform this, global sensitivity 
analysis was employed in SWAT-CUP 2012.  
 
Calibration is the process of adjusting model parameters so 
that the model output matches the observed data. 
Calibrations are very important for parameters that were not 
measured and are intrinsically heterogeneous and uncertain, 
as it serves to optimize the unknown model parameters. 
Validation is used to test the calibrated model without further 
parameter adjustments with an independent dataset. For this 
catchment, observed streamflow of 1993-2011 was split into 
a warm-up period (1993-1995), calibration period (1996-
2005) and validation period (2006-2011). A longer calibration 
period was used to improve the SWAT model 
parameterization and reduce the uncertainty in the model 
output (Gashaw et al.,2018). 
 
To evaluate the SWAT model simulation outputs in relative 
to the observed data, model performance evaluation is 
necessary. There are various methods to evaluate the model 
performance during the calibration and validation periods. 
To evaluate the model performance a coefficient of 
determination (R2), Nash Sutcliffe Efficiency (NSE), and root 
mean square error (RMSE) and PBIAS are applied. The 
accuracy of the simulated value when compared with the 

observed value is evaluated by R2, whereas the NSE measures 
the goodness of fit and describes the variance between the 
simulated and observed values. 
 

R2 = ቎
∑ ൫ொ೔

೚್ೞିொ೚್ೞ
೘೐ೌ೙൯ቀொ೔

ೞ೔೘ିொೞ೔೘
೘೐ೌ೙ቁ೙

೔సభ

ට∑ ሺொ೔సభ
೚್ೞିொ೚್ೞ

೘೐ೌ೙ሻమ೙
೔సభ ට∑ ሺொ೔

ೞ೔೘ିொ೚್ೞ
೘೐ೌ೙ሻమ೙

೔సభ

቏

ଶ

 (4) 

 
where; R2 is the coefficient of determination, Qi

obs is the ith 
observed flow, Qi

sim is the ith-simulated flow, 𝑄௢௕௦
௠௘௔௡ is the 

observed mean flow, 𝑄௦௜௠
௠௘௔௡is the simulated mean flow and n 

is the total number of observed flow. It measures how well 
the simulated versus observed regression line approaches an 
ideal match and ranges from 0 to 1, with a value of 0 
indicating no correlation (Moriasi et al., 2007). 
 

NSE = 1-
∑ ሺொ೔

೚್ೞିொ೔
ೞ೔೘ሻమ೙

೔సభ

∑ ሺொ೔
ೞ೔೘ିொ೚್ೞ

೘೐ೌ೙ሻమ೙
೔సభ

 (5) 

 
where; NSE is the Nash-Sutcliffe efficiency. NSE measures 
the level of consistency of measured values with predicted 
values and is generally ranged from –∞ to 1 with NSE = 1 as 
the optimal value (Moriasi et al., 2007). 
 

PBIAS = 
∑ ቀொ೔

೚್ೞିொ೔
ೞ೔೘ቁ

మ
∗ଵ଴଴೙

೔సభ

∑ ொ೔
೚್ೞ೙

೔సభ
 (6) 

 
where; PBIAS is the percentage deviation between observed 
and simulated values. PBIAS measures the relative 
percentage error between simulated and measured values  
(Moriasi et al., 2007). The positive value denotes 
underestimation; negative value indicates overestimation 
and zero means optimal estimation. The propagation of 
uncertainties in model outputs in SUFI-2, expressed as the 
95% probability distribution, calculated by the 2.5% and 
97.5% levels of the cumulative distributions of output 
variables, is considered as 95PPU (Abbaspour, 2015). 
 
3. Results and Discussion 
3.1. Sensitivity Analysis, SWAT Model Calibration and 
Validation 
Streamflow sensitivity analysis was performed on 20 
hydrological parameters using SUFI-2 global sensitivity 
analysis in SWAT- CUP.  Eleven sensitive parameters were 
considered based on t-stat and p value as shown in Table 1.  

 
 
 

Table 1. Sensitivity analysis for hydrologic parameters 
 

Parameter  t-stat P-value Rank 

R_CN2 5.348435899 0.000052234 1 
V_ALPHA_BF 4.551513807 0.000372045 2 
R_REVAPMN -2.299283507 0.036274494 3 
R_EPCO 1.964763518 0.068243406 4 
R_SOL_Z -1.854604056 0.08341677 5 
R_SOL_K -1.761745084 0.098474242 6 
V_GW_DELAY 1.321659811 0.206085477 7 
V_GWQMN 1.030584764 0.319067529 8 
R_RCHRG_DP 0.787128391 0.343466598 9 
R_HRU_SLP -0.78347279 0.345544774 10 
R_CH_N2 -0.598550096 0.458403985 11 
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The t-stat provides a measure of sensitivity (larger absolute 
values indicate more sensitivity) and the p-value determines 
the significance of sensitivity (smaller value suggest a higher 
level of significance) (Abeysingha et al., 2020). Initial SCS 
runoff curve number for moisture condition II (CN2) and 
base flow alpha factor (ALPH A_BF) are found to be the 
most sensitive parameters. Result of sensitivity analysis was 
used to conduct the calibration of SWAT model. 

The calibration of the model was performed for a period of 
January 1, 1996, to December 31, 2005, using SUFI- 2 
algorithm in SW AT-CUP using measured streamflow data. 
The model was calibrated by model parameters, and those 
parameters with fixed value have also been validated. Taking 
the first three years as a warm up period, the flow was 
simulated for 10 years. The automatic calibration SUFI-2 
was used to calibrate the model using observed stream flow. 

 
 

 

 
 

Fig. 2.  Results of average monthly flows for calibration (a) and validation (b) 
 
 
 

Observed daily stream flows were adjusted on a monthly 
basis, and simulations run were conducted on monthly basis 
to compare the modeling output with the measured daily 
discharge at the outlet of Sululta Catchment. The calibration 
results showed good agreement between the observed and 
simulated streamflow, with coefficient of determination (R2) 
and NSE values of 0.75 and 0.71, respectively.  
 
Model validation was carried out between 2006-2011. The 
validation results also showed a good agreement with 
coefficient of determination (R2) and NSE values of 0.78 and 
0.70, respectively.  
 
From Table 1, R_ means an existing parameter value is 
multiplied by 1+a given value and V_ means the existing 
parameter value is to be replaced by a given Value. 

The calibration and validation graph shows that, the 
observed streamflow slightly under estimates and over 
estimates, the simulated flow during calibration and 
validation period (Fig. 2). However, the model is good 
enough to simulate the streamflow and fulfills the 
requirement recommended by Moriasi et al. (2007). From the 
scatter plot of observed and simulated flow (Fig. 3), most of 
the scatter points are uniformly clustered during calibration 
and validation period indicating a good agreement between 
the observed and simulated flow. 
 
3.2. Climate Change Projections under RCP Scenarios  
3.2.1. Precipitation  
Average monthly precipitation in the study area has been 
projected under RCP 4.5 and RCP 8.5 climate scenarios with 
reference to baseline (1987-2016) precipitation in two-time 
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horizons, i.e. near future (2021-2050) and mid near future 
(2051-2080). In the RCP4.5 Scenario, average monthly 
precipitation decreased in almost every month except, may, 
June and July in the near future (2021-2050). The maximum 
change in average monthly precipitation is observed in 
October in the near future and in the mid near future under 
RCP8.5.  
 
In short rainy season (February-May) and dry season 
(October-January), precipitation amount decreased and 
varies from -4.65 to -19.47% and -38.94 to -56.15% 
respectively, but in wet season (June-September) 

precipitation projected to increase and ranges from +2.54 to 
+ 11.67%, under both RCP4.5 and RCP8.5 climate scenarios 
for both near future and mid near future time periods. The 
change in average annual precipitations increases and varies 
from +2.6 to + 6.48% for RCP4.5 and decreases and ranges 
from -2.55 to -2.83% under RCP8.5 climate scenario (Fig. 4).  
 
This study shows that average monthly precipitation 
decreases highly in dry season (October-January). Similar 
study by Dibaba et al. (2020) using four RCMs also reported 
a decrease in the projected average monthly precipitation in 
dry season. 

 
 
 

 
 

 
 

Fig. 3. Results of observed and simulated flows using scatter plot for calibration (a) and validation (b) 
 
 

 

3.2.2. Maximum and Minimum Temperature 
The study revealed future projected maximum and minimum 
temperature changes for both RCP4.5 and RCP8.5. The 
results show that the maximum and minimum temperatures 
increase under both RCPs during the study period. Variation 

in monthly mean temperature is greater for minimum 
temperature than for maximum temperature (Figs. 5-6).  
 
In the RCP 4.5 scenario, the changes in average monthly 
maximum temperature ranges from 0.2 ℃ (June) to 1.33℃ 
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(January) and 0.14℃ (May) to 1.43℃  (December) in 2021 to 
2050 and 2051to 2080 respectively.  
 
Under RCP 8.5, the change in average monthly maximum 
temperature varied from 0.37 ℃ (May) to 1.63℃ (October) 
and 0.56 ℃ (September) to 1.58 ℃ (November) in near and 
mid near future, respectively. The change in monthly average 
minimum temperature under RCP 4.5 varied from 0.28 ℃ 
(July) to 1.93 ℃ (November). For RCP8.5, change in average 

monthly minimum temperature varied from 1.04 ℃ (April) 
to 2.8 ℃ (December). The study shows that the projection of 
RCP8.5 is warmer than RCP4.5.  
 
The largest temperature changes at RCP8.5 was also reported 
by Galata et al. (2021) using RCA4 climate model. A study 
by Dibaba et al. (2020) four RCMs and Galata et al. (2021) 
used the RCA4 climate model to reveal that the highest 
temperature change is observed in the RCP8.5 Scenario. 

 
 
 

 
 
Fig. 4. Future changes in average precipitation in Sululta Catchment for 2021-2050 and 2051-2080 under RCP4.5 and RCP8.5 compared to the baseline period 

 
 
 

 
 

Fig. 5. Future change in average monthly maximum temperature for RCP4.5 and RCP8.5 Scenarios 
 
 
 

3.3. Evaluating Impact of Climate Change on Stream Flow 
SWAT simulations were performed against the baseline 
RCP4.5 and RCP8.5 to quantify the impact of climate 
change. Simulation results of stream flow for the two future 
time periods, 2021s (2021-2050) and 2051s (2051-2080) were 
compared with the baseline period simulation. The change in 
stream flow of Sululta Catchment under RCP 4.5 and RCP 

8.5 scenarios shows both increasing and decreasing trends in 
average monthly values.  
 
In both RCP 4.5 and RCP8.5 Scenario, the change in average 
monthly stream flow was found to be decreasing for all 
months except June and July in the near future (2021-2050) 
and May, June and July in the mid near future (2051-2080). 
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Under RCP4.5, average monthly stream flow change ranges 
from -39.23 to 59.07% and -38.80 to 26.85% during 2021-
2050 and 2051-2080 respectively. Similarly, the change in 

average monthly stream flow varies from -38.80 to 26.85% 
for the period 2021to 2050, and from -37.44 to 32.30% over 
the period 2051to 2080 under the RCP8.5 Scenario (Fig. 7).  

 
 
 

 
 

Fig. 6. Future changes in average monthly minimum temperature for RCP4.5 and RCP8.5 Scenarios 
 
 
 

 
 

Fig. 7. Average monthly streamflow changes for RCP4.5 and RCP8.5 Scenarios 
 
 
 

Seasonal and annual projection of stream flow showed a 
mixed increasing and decreasing trend even though the rate 
varies (Fig. 8).  
 
In Belg season (February-May) and Bega (dry) season 
(October-January), stream flow will be decreased under both 
RCP climate scenarios of future but in Kiremt (rainy) season 
(June-September) change in average monthly flow will 
increase under both RCP4.5 and RCP8.5.  
 
The Bega season shows larger share in decrease of flow 
volume in the future. The decrease may reach up to 35.84% 

during 2051-2080 and 34.50% at 2021-2050 for RCP 4.5 and 
RCP 8.5, respectively. Belg season also contributes the largest 
decrease in stream flow at 2021-2050 up to 17.18% and 
17.77% in RCP 4.5 and RCP 8.5 respectively. But, kiremt 
seasons shows increase in stream flow in the future up to 
17.46% in RCP4.5 and up to 2.47% in RCP8.5. The study by 
(Bekele et al., 2021) using four RCMs reported the projected 
stream flow increase in kiremt and decrease in Belg and Bega 
under both RCP4.5 and RCP8.5. The projected average 
annual stream flow increases by 11.91% during 2021-2050 
and 5.26% during 2051-2080 for RCP 4.5 and decrease in 
annual stream flow is expected by 1.43% in RCP 8.5. 
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Fig. 8. Average annual and seasonal change in stream flow for RCP4.5 and RCP8.5 Scenarios 
 
 
 

5. Conclusion 
In this study, impacts of climate change on the future stream 
flow of Sululta Catchment has been assessed by using SWAT 
hydrological model on the basis of climate change forced by 
RCP4.5 and RCP8.5 climate scenarios of IPCC 5th 
Assessment (AR5) report for 2021s (2021-2050) and 2051s 
(2051-2080). The bias correction for downscaled RCPs data 
was corrected by bias correction methods successfully as the 
simulated climate variables produced consistent results with 
the historical records. The study reveals that there will be a 
decrease in precipitation values in dry and small rainy 
seasons as compared to the baseline period under both 
RCP4.5 and RCP8.5. However, it showed an increasing and 
decreasing trend in rainy season (JJAS) under both RCP4.5 
and RCP8.5.  
 
The results show that the maximum and minimum 
temperatures increase in both, RCP4.5 and RCP8.5 
scenarios. The study also shows that the projection of 
RCP8.5 is warmer than RCP4.5. Seasonal and annual 
projection of stream flow showed a mixed increasing and 
decreasing trend. In Belg season (February-May) and Bega 
(dry) season (October-January), stream flow will be 
decreased under both RCP climate scenarios of future but in 
Kiremt (rainy) season (June-September) change in average 
monthly flow will increase under both RCP4.5 and RCP8.5. 
The projected average annual stream flow increased by 
11.91% at 2021-2050 and 5.26% at 2051-2080 for RCP 4.5 
and decrease in annual stream flow is observed by 0.98% in 
the near future and by 1.43% in the mid near future under 
RCP8.5.  
 
This research will help plan sustainable management and 
decision-making to support future public policy in the design 
and implementation of various water resources programs. In 
this study, only two climate scenarios of RCM (RCP4.5 and 
RCP8.5) were used and the hydrological model did not 

consider land use land cover changes for different periods 
during the simulations. However, changes in land use and 
land cover can interact with climate, and different projections 
of future hydrological conditions are expected. Future 
research should therefore be conducted on related topics and 
should include land use and land cover change. 
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