Structural-Geochemical Controls on Mineralization Localization in the Vakijvari Ore Field, Georgia
Keywords:
Hydrothermal alteration, ore field, intrusive rocks, rift-related magmatism, structural controlAbstract
The Vakijvari Ore Field represents a structurally and geologically complex system formed through multiphase magmatic-hydrothermal processes, genetically linked to the Middle Eocene subvolcanic magmatism of the Adjara-Trialeti rift-fold zone. This study presents an integrated analysis based on petrological, mineralogical, geochemical, and remote sensing data. Microscopic and mineralographic investigations revealed the presence of copper-polymetallic mineralization formed due to fractional crystallization and hydrothermal metasomatism. Using ASTER satellite imagery and DIPS structural analysis software, NE–SW and NW–SE oriented fault systems were identified, which directly control the zoning and localization of mineralization. The integrated dataset demonstrates that structural control, magmatic evolution, and late-stage hydrothermal alteration collectively drive ore body formation, establishing the Vakijvari Ore Field as a significant target for future geological and mineral resource exploration and evaluation.
References
Adamia, S., Chabukiani, A., Sadradze, N., Zakariadze, G. (2011). Tectonic evolution of the Caucasus region — From Gondwana to the present. Geological Society, London, Special Publications 377 (1), 261–280. https://doi.org/10.1144/SP377.11.
Adamia, S., Zakariadze, G., Chabukiani, A., Sadradze, N., Tsereteli, N., 2,010. Tectonic evolution of the Caucasus region—a brief overview. Geological Society, London, Special Publications 340 (1), 317–332. https://doi.org/10.1144/SP340.14.
Audétat, A., Günther, D., Heinrich, C.A., 2000. Magmatic–hydrothermal evolution in a breccia pipe-type ore deposit: A melt inclusion study. Geology 28 (8), 751-754. https://doi.org/10.1130/0091-7613(2000)28<751:MEIABP>2.0.CO;2.
Bissig, T., Tosdal, R.M., 2009. Stratigraphic controls on epithermal Au-Ag mineralization in volcanic basins: A review of the El Pechón deposit, Argentina. Economic Geology 104(7), 1153–1168. https://doi.org/10.2113/gsecongeo.104.7.1153.
Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting mantle and crustal sources? Lithos 78 (1–2), 1-24. https://doi.org/10.1016/j.lithos.2004.04.042.
Chiaradia, M., 2009. Adakite-like magmas from a non-subduction setting: Evidence from the Miocene post-collisional volcanism in the NW Alps. Lithos 111 (1-2), 39-56. https://doi.org/10.1016/j.lithos.2008.11.001.
Chkhikvishvili, Z., 1992. Preparation of geological-geochemical-geophysical foundations for the search for gold in Guria in Guria’s oral area. Unpublished technical report, Institute of Geology, Tbilisi.
Cooke, D.R., Hollings, P., Walshe, J.L., 2011. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology 106 (5), 803-840. https://doi.org/10.2113/econgeo.106.5.803.
Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks. London: Allen & Unwin.
Faulds, J.E., Varga, R.J., 1998. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes. GSA Special Papers, 323, 1-45. https://doi.org/10.1130/0-8137-2323-X.1.
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.
Gamkrelidze, I., Okrostsvaridze, A., Koiava, K., Maisadze, F., 2020. Geological structure of Georgia. In I. Gamkrelidze (Ed.), Geological Structure of Georgia (pp. 11–24). Springer Nature. https://doi.org/10.1007/978-3-030-40704-6_2.
Ghasemi, A., Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences 26 (6), 683-693. https://doi.org/10.1016/j.jseaes.2005.01.002.
Gillespie, A.R., Kahle, A.B., Walker, R.E., 1987. Color enhancement of highly correlated images: I. Decorrelation and HSI contrast stretches. Remote Sensing of Environment 20 (3), 209-235. https://doi.org/10.1016/0034-4257(87)90088-5.
Jebelli, M., Yousefi, M., 2022. Post-collisional porphyry Cu–Au mineralization in Iran: Structural controls and tectonic implications. Ore Geology Reviews 143, 104730. https://doi.org/10.1016/j.oregeorev.2021.104730.
McKenzie, D., Bickle, M.J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3), 625–679. https://doi.org/10.1093/petrology/29.3.625.
Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37 (3–4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9.
Moritz, R., Heinrich, C.A., Petrunov, R., 2004. Late Cretaceous Cu–Au epithermal deposits of the Panagyurishte district, Srednogorie zone, Bulgaria. In Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), Economic Geology 100th Anniversary Volume 1905-2005 (pp. 1035-1059). Society of Economic Geologists. https://doi.org/10.5382/AV100.28.
Okrostsvaridze, A., Chang, I.H., Gagnidze, N., Bluashvili, D., Boichenko, G., Gogoladze, S., 2020. Zircon U–Pb geochronology and analysis of magmatic processes of ore-bearing plutons in the Achara–Trialeti rift-fold zone of the Lesser Caucasus [in Georgian]. Proceedings of the Georgian National Academy of Sciences, Series of Earth Sciences 48 (2), 123-135.
Pearce, J.A., 1996. A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration (pp. 79-113). Geological Association of Canada, Short Course Notes 12.
Richards, J.P., 2005. Causal links between igneous activity, mineralization, and regional tectonics. Economic Geology 100 (6), 111–118. https://doi.org/10.2113/gsecongeo.100.6.111.
Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman.
Rowan, L.C., Mars, J.C., Simpson, C.J., 2005. Lithologic mapping of the Mordor REE–Th deposit, Australia, using ASTER data. Remote Sensing of Environment 99 (1-2), 105-126. https://doi.org/10.1016/j.rse.2004.11.021.
Shand, S.J., 1927. Eruptive Rocks. John Wiley & Sons.
Sibson, R.H., 1996. Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology 18 (8), 1031-1042. https://doi.org/10.1016/S0191-8141(96)00032-6.
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology 105 (1), 3-41. https://doi.org/10.2113/gsecongeo.105.1.3.
Sisson, T.W., Grove, T.L., 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology 113 (2), 143-166. https://doi.org/10.1007/BF00283225.
Sosson, M., Adamia, S., Rolland, Y., 2010. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia): New insights. In Sosson, M., Kaymakci, N., Stephenson, R. A., Bergerat, F., Starostenko, V. (Eds.), Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society, London, Special Publications 340 (1), 329-352. https://doi.org/10.1144/SP340.14.
White, N.C., Hedenquist, J.W., 1995. Epithermal gold deposits: Styles, characteristics and exploration. Society of Economic Geologists Newsletter 23, 1-13.
Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. London: Unwin Hyman.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Giorgi Mindiashvili, Benjamin Busch, David Bluashvili, Keti Benashvili, Mirian Makadze, Revaz Menabde, Meri Lekishvili

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors keep the copyrights of the published materials with them, but the authors are aggee to give an exclusive license to the publisher that transfers all publishing and commercial exploitation rights to the publisher. The puslisher then shares the content published in this journal under CC BY-NC-ND license.
