Landscape Metrics for Urbanization and Urban Land-Use Change Monitoring from Remote Sensing Images: A case of Shiraz Metropolis, Iran

  • Mohammadreza Elmi
  • Abdulmannan Rouhani
  • Ehsan Keshavarz
Keywords: Land use change, Landscape metrics, Urbanization, Remote sensing, Shiraz city


Urban development causes fundamental changes in the ecological structure and functioning of landscape and gradual change in the spatial structure and landscape pattern. Landscape ecology concepts can be used in landscape planning to reduce the negative impacts of urbanization. Landscape ecology, based on landscape metrics, is an appropriate tool for mapping and quantifying spatial land use characteristics. The aim of the current study is to quantify the spatial pattern of Shiraz metropolitan area using landscape metrics over a 36-year period. The metrics used for the analysis were Number of points (NP), Point density (PD), Edge density (ED), The edge effect (TE), Largest point index (LPI), Landscape index (LSI), Shannon diversity index (SHDI) and Shannon equality index (SHEI). These metrics were produced for the years 1982, 1996, 2006, and 2018. The classes of urban area, agriculture, tree cover, bare land, and street/road were the subjects for analysis. Results of the study reveal fragmentation of agricultural land and tree cover over the third period of the study (2006-2018). Increase in suburban area between 1982 and 2006, due to the increasing growth of urbanization, has taken place in different directions, which shows disorientated and disorderly trend; however, the trend has declined between 2006 and 2016, indicating orientation of outskirt development as a result of building ring roads within the study area. Economic growth and increased urbanization have been identified as the most important factors affecting land use in the area.


Ali, R., Bakhsh, K., Yasin, M.A., 2019. Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan. Sustain. Sustainable Cities and Society 48, 101553. Doi: 10.1016/j.scs.2019.101553.

Bihamta, N., Soffianian, A., Fakheran, S., Gholamalifard, M., 2014. Using the SLEUTH Urban Growth Model to Simulate Future Urban Expansion of the Isfahan Metropolitan Area, Iran. Journal of the Indian Society of Remote Sensing 43, 407-414. Doi: 10.1007/s12524-014-0402-8.

Buyantuyev, A., Wu, J., Gries, C., 2009. Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: Time, space and thematic resolution. Landscape and Urban Planning 94, 206-217. Doi:

Dadashpoor, H., Azizi, P., Moghadasi, M., 2019. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of The Total Environment 655, 707-719. Doi: 10.1016/j.scitotenv.2018.11.267.

Dadashpoor, H., Azizi, P., Moghadasi, M., 2019. Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran. Sustainable Cities and Society 47, 101502. Doi: 10.1016/j.scs.2019.101502.

Dadashpoor, H., Salarian, F., 2018. Urban sprawl on natural lands: Analyzing and predicting the trend of land use changes and sprawl in Mazandaran city region, Iran. Environment, Development and Sustainability 22, 593-614. Doi: 10.1007/s10668-018-0211-2.

Feng, Y., Liu, Y., Tong, X., 2018. Spatio-temporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecological Indicators 87, 22-32. Doi: 10.1016/j.ecolind.2017.12.034.

Hao, R., Yu, D., Liu, Y., Liu Y., Qiao J., Wang X., Du, J., 2017. Impacts of changes in climate and landscape pattern on ecosystem services. Science of The Total Environment 579, 718-728. Doi: 10.1016/j.scitotenv.2016.11.036.

He, A., Yu, S., Li, G., Zhang, J., 2020. Exploring the Influence of Urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 95 (2020), 104576 (1-12). Doi: 10.1016/j.landusepol.2020.104576.

He, Y., Song, J., Hu, Y., Tu, X., Zhao, Y., 2019. Impacts of different weather conditions and landuse change on runoff variations in the Beiluo River Watershed, China. Sustainable Cities and Society 50, 101674. Doi: 10.1016/j.scs.2019.101674.

Jiao, M., Hu, M., Xia, B., 2019. Spatiotemporal dynamic simulation of land-use and landscape-pattern in the Pearl River Delta, China. Sustainable Cities and Society 49, 101581.

Ji, W., 2008. Landscape Effects of Urban Sprawl: Spatial and Temporal Analyses Using Remote Sensing Images and Landscape Metrics. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, Volume XXXVII, Part B7.

Lausch, A., Herzog, F., 2002. Applicability of Landscape metrics for the monitoring of landscape change: issue of scale, resolution and interpretability. Ecological Indicators 2 (1-2), 3-15. Doi: 10.1016/S1470-160X(02)00053-5.

Li, H., Peng, J., Liu, Y., Hu, Y., 2017. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecological Indicators 82, 50-60. Doi: 10.1016/j.ecolind.2017.06.032.

Liu, Y., Li, Y., 2017. Revitalize the world’s countryside. Nature 548 (7667), 275-277. Doi:10.1038/548275a.

Luederitz, C., Lang, D. J., von Wehrden, H., 2013. systematic review of guiding principles for sustainable urban neighborhood development. Landscape and Urban Planning 118, 40-52. Doi: 10.1016/j.landurbplan.2013.06.002.

Luck, M., Wu, J., 2002. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region of USA. Landscape Ecology 17, 327-339. Doi: 10.1023/A:1020512723753.

Min, M., Lin, C., Duan, X., Jin, Z., Zhang, L., 2019. Spatial distribution and driving force analysis of urban heat island effect based on raster data: A case study of the Nanjing metropolitan area, China. Sustainable Cities and Society 50, 101637. Doi: 10.1016/j.scs.2019.101637.

O'Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., DeAngelis, D.L., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale V.H., Graham, R.L., 1988. Indices of landscape pattern. Landscape Ecology 1, 153- 162. Doi: 10.1007/BF00162741.

Park, R.E., Burgess, E.W., McKenzie, R., 1925. The City in, Univhersity of Chicago Press, Chicago, Illinois, USA.

Peng, J., Wang, Y., Zhang, Y., Wu, J., Li, W., Li, Y., 2010. Evaluating the effectiveness of land-scape metrics in quantifying spatial patterns. Ecological Indicators 10, 217-223. Doi: 10.1016/j.ecolind.2009.04.017.

Pelorosso, R., Leone, A., Boccia, L., 2009. Land cover and land use change in the Italian central Apennines: A comparison of assessment methods. Applied Geography 29, 35-48. Doi: 10.1016/j.apgeog.2008.07.003.

Sahana, M., Hong, H., Sajjad, H., 2018. Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of The Total Environment 628-629. 1557-1566. Doi: 10.1016/j.scitotenv.2018.02.170.

Simwanda, M., Murayama, Y., 2018. Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: Implications for sustainable urban development. Sustainable Cities and Society 39, 262-274. Doi: 10.1016/j.scs.2018.01.039.

Shen, S., Yue, P., Fan, C., 2019. Quantitative assessment of land use dynamic variation using remote sensing data and landscape pattern in the Yangtze River Delta, China. Sustainable Computing: Informatics and Systems 23, 111-119. Doi: 10.1016/j.suscom.2019.07.006.

Tong, L., Hu, S., Frazie,r A.E., 2019. Hierarchically measuring urban expansion in fast urbanizing regions using multidimensional metrics: A case of Wuhan metropolis, China. Habitat International 94 (2019), 102070 (1-13). Doi: 10.1016/j.habitatint.2019.102070.

Turner, M.G., Gardner, R.H., 1994. Quantitative methods in landscape ecology: The analysis and interpretation of landscape ecology: The Analysis and Interpretation of Landscape Heterogeneity. Springer Verlag.

Wang, Y., Li, J., Fan, Z., Wang, X., 2008. GIS-Based Urban Mosaic and its Gradient Analysis: A Case Study from Wuhu City, China. The 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2008), May 16-18, 2008 Shanghai, China. Doi: 10.1109/ICBBE.2008.577.

Wen, Q., Zhang, Z., Shi, L., Zhao, X., Liu, F., Xu, J., Yi, L., Liu, B., Wang, X., Zuo, L., Hu, S., Li, N., Li, M., 2016. Extraction of basic trends of urban expansion in China over past 40 years from satellite images. Chinese Geographical Science 26 (2), 129-142. Doi: 10.1007/s11769-016-0796-z.

Wu, Q., Guo, F., Li, H., Kang, J., 2017. Measuring landscape pattern in three-dimensional space. Landscape and Urban Planning 167, 49-59. Doi: 10.1016/j. landurbplan.2017.05.022.

Xiao, D.N., Li, X.Z., Gao, J., 2003. Landscape Ecology. Science Press, Beijing, China.

Xu, C., Zhao, S., Liu, S., 2020. Spatial scaling of multiple landscape features in the conterminous United States. Landscape Ecology 35, 223-247. Doi: 10.1007/s10980-019-00937-1.

Yang, J., Li, S., Lu, H., 2019. Quantitative influence of land-use changes and urban expansion intensity on landscape pattern in Qingdao, China: Implications for urban sustainability. Sustainability 11 (21), 6174. Doi: 10.3390/su11216174.

Zhang, Q., Su, S., 2016. Determinants of urban expansion and their relative importance: A comparative analysis of 30 major metropolitans in China. Habitat International 58, 89-107. Doi: 10.1016/j.habitatint.2016.10.003.

Zhou, W., Cao, F., 2020. Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature. Ecological Indicators 109, 105778. Doi: 10.1016/j.ecolind.2019.105778.