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1. Introduction 
Satellites orbiting about the center of gravity of the earth can 
only measure heights relative to a geocentric reference 
ellipsoid (Fusami et al., 2021). The h determination for 
national heightening has been one of the major ongoing 
research focuses among geodesist, geophysicist, surveyors, 

topographers and numerous researchers. The essence is that, 
these heights are important for practical applications in 
geodesy, surveying, photogrammetry, Geographic 
Information Systems (GIS), and engineering surveys in the 
areas of 3-Dimensional (3D) modelling, topographical 
mapping, structural health monitoring, road and building 
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The standard forward transformation for the direct conversion of curvilinear geodetic 
coordinates (φ, γ, Η) to its associated Cartesian coordinates (E, N, Z) has become a major 
challenge in most countries.  This is due to the non-existence of the ellipsoidal height (h) in 
the modelling of their local geodetic reference network.  Numerous studies in the past and 
recent years have suggested various mathematical techniques for predicting and estimating 
local ellipsoidal heights. Primary data used for the studies comprises of topographic data 
obtained from a survey in the Ghana urban water supply project in the Greater Kumasi 
Metropolitan Area (GKMA).This study considered an empirical evaluation of soft computing 
techniques such as Back Propagation Artificial Neural Network (BPANN), Generalized 
Regression Neural Network (GRNN), Radial Basis Function Artificial Neural Network 
(RBFANN) and conventional methods such as Polynomial Regression Model (PRM), 
Autoregressive Integrated Moving Average (ARIMA) and Least Square Regression (LSR). 
The motive is to apply and assess for the first time in our study area, the working efficiency 
of the aforementioned techniques. Each model technique was assessed based on statistical 
hypothesis (F, t) tests and performance criteria indices such as arithmetic mean error (AME), 
arithmetic mean square error (AMSE), minimum and maximum error value, and arithmetic 
standard deviation (ASD). The statistical analysis of the results revealed that, RBFANN, 
GRNN, BPANN, LSR, ARIMA and PRM, successfully estimated the ellipsoidal heights for 
the study area. However, the ANN models (RBFANN, BPANN, GRNN) outperforms the 
conventional models (LSR, PRM, ARIMA) in terms of accuracy and precision in estimating 
the local ellipsoidal heights. Also, statistical findings revealed that RBFANN produced more 
reliable results compared with the other methods. The main conclusion drawn from this study 
is that, the method of using soft computing is very much promising and can be adopted to 
solve some of the major problems related to height issues in Ghana. This study seeks to 
contribute to the existing knowledge on establishing a precise geodetic vertical datum in 
Ghana for national heightening purpose. 
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construction, extraction of metallic minerals, modeling of 
geometric geoid (Gucek and Basic, 2009; Konakoglu and 
Cakir, 2018; Kumi-Boateng and Peprah, 2020; Yilmaz et al., 
2017). Ellipsoidal height system provides a compatible 
vertical model with a global height system for studies in 
geodynamics and geo-hazard processes (Bihter, 2011). Also, 
these heights are important due to their geocentric and 
physical significance (Herbert and Ono, 2018) and very 
useful for geometric correction of high-resolution satellite 
images and Synthetic Aperture Radar (SAR) (Falchi et al., 
2018).  

Ghana’s local geodetic reference network is based on the War 
Office 1926 ellipsoid with data in latitude, longitude and 
orthometric height (φ, γ, Η ) without the existence of 
ellipsoidal height (h) (Ziggah et al., 2016). This is because 
most local geodetic networks were established at a time 
where satellite positioning techniques have not reached the 
advanced stage (Ziggah et al., 2016). Hence, measured 
distances, angles and local datum points of most countries 
were fixed on the basis of astronomical observations, 
traversing and terrestrial triangulation (Constantin-Octavian, 
2006).  

 
 
 

 
 

Fig. 1. Map of the study area 
 
 
 

The applied methods estimated only horizontal positions and 
orthometric heights which were determined through levelling 
for the geodetic network. In view of that, several scholars 
have proposed different methodologies to aid in predicting 
ellipsoidal heights at a good precision. However, since 
classical methods cannot fully satisfy the current precision 
needs, it calls for the adoption of a more advanced prediction 
techniques, nevertheless, it needs to be studied and analyzed 
for comparable accuracies (Lee et al., 2020).  
 
Commonly used methods for determining and predicting 
ellipsoidal heights includes levelling, contouring, least 
squares collocation, polynomial regression, Earth 
Gravitational Model and kriging. The levelling techniques is 
quite laborious, time consuming, expensive and requires 
rigorous field observations when large expanse of land is to 
be surveyed followed by post field computations (Ayer et al., 

2016; Herbert and Ono, 2018; Peprah and Kumi, 2017). The 
process of extracting heights from contours on existing 
topographical maps and integrating with leveled spot heights 
can be problematic due to generalizations during contouring, 
and the need to interpolate between contours for specific grid 
nodes (Ayer et al., 2016). Hence, there is a necessity of 
utilizing some mathematical modeling techniques to 
eliminate discrepancies in the interpolation results (Ayer et 
al., 2016). The efficiency of Least Squares Collocation (LSC) 
for global and regional modelling do not hold without 
modifying the cross-variance function (Ophaug and Gerlach, 
2017).  
 
The Polynomial Regression Model (PRM) has a few 
problems associated with it. The best fit is obtained when the 
order is high(Chen and Hill, 2005; Tusat, 2011), but rather 
creates higher distortions when using the derived unknown 
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parameters (Poku-Gyamfi, 2009). Hence, there is the need to 
keep the order as low as possible. Increase in distance 
introduce noise and increase variance when using the kriging 
method (Erol and Celik, 2005). Earth Gravitational Model 
(EGM) accuracy cannot satisfy any civil engineering works 
(Al-Krargy et al., 2017) and its values needs to be validated 
using independent datasets (Abeho et al., 2014).  
 
Despite the fact that these techniques have been utilized, they 
exhibit some practical drawbacks as have been elaborated by 
several scholars. In view of that, researchers have tried to 
evaluate the performance of Artificial Intelligence techniques 
for precise ellipsoidal heights predictions. Notably, the 
Artificial Neural Network (ANN) is one of the commonly 

used soft computing methods (Akyilmaz et al., 2009; Kaloop 
et al., 2017; Veronez, 2011).  
 
El-Rabbany et al. (2015) conducted a comparative analysis 
between the developed neural network model and the 
sequential least squares method for tidal height prediction 
using tidal data series. It was revealed that the accuracy level 
of the tidal prediction improved by a factor of 5 when the 
neural network model was used. The ANN is computational 
models that imitate the human brain in performing a 
particular function  through learning, or training, and then 
generalizing the network outputs for other inputs; A neural 
network consists of processing elements, or neurons, that are 
massively interconnected (El-Rabbany et al., 2015).  

 
 
 

 
 

Fig. 2. 3D model map of study area 
 
 
 

ANN has been successfully applied in heights predictions and 
datum transformation in Ghana (Peprah and Kumi, 2017). 
ANN techniques can be utilized in solving complicated 
problem (Kaloop et al., 2017). ANN techniques which is 
most widely used in geo-scientific discipline can form linear 
relationship between non-linear variables (Cakir and 
Konakoglu, 2019; Konakoglu, 2019).  
 
The ANN has been used to solve some of the problems 
related to height issues in geodesy. Its suitability as an 
alternative technique to the classical methods of solving 
geodetic problems have been duly investigated (Yakubu and 
Dadzie, 2019). Notable among them are orthometric height 
predictions in a mine (Peprah and Kumi, 2017), GPS heights 
transformation (Fu and Liu, 2014; Liu et al., 2011; Wu et al., 
2012; Yilmaz et al., 2017) and geoid modelling (Ahmadi et 
al., 2016; Akcin and Celik, 2013; Kao et al., 2017; Kavzoglu 
and Saka, 2005; Pikridas et al., 2011; Zaletnyik et al., 2007).  
 
The authors concluded that, the results achieved by ANN 
models’ techniques are encouraging and provides promising 
testaments in the future for solving some of the problems 

related to height issues (Akcin and Celik, 2013; Akyilmaz et 
al., 2009; Veronez et al., 2011). Conversely, other regressions 
algorithms have been developed and its efficacy in predicting 
heights are yet to be evaluated. For instance, GRNN have 
been used widely and yielded successfully results such as in 
coordinate transformation (Cakir and Konakoglu, 2019), 
predicting blast induced ground vibration (Arthur et al., 
2019), and modelling data uncertainties (Yakubu and 
Dadzie, 2019).  
 
In recent times, the efficiency of ARIMA, Polynomial 
Regression Model (PRM), and Multiple Linear Regression 
model (MLR) in solving majority of problems in geo-
scientific community have been duly investigated as reported 
in (Peprah and Kumi, 2017; Yakubu et al., 2018). It is evident 
from related reviews and existing literatures that the 
applications of ANN techniques in Ghana are still limited 
and its suitability for ellipsoidal heights estimation for the 
study area has not been duly investigated. Hence, a 
comparison between these Artificial intelligence models and 
classical regression models have not been conducted. The 
existing knowledge and publications have not fully addressed 
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the issue of applying alternative techniques in predicting 
ellipsoidal heights in Ghana.  
 
In addition, upon careful review of existing studies, the 
authors realized that the utilization of the BPANN, 
RBFANN, GRNN, ARIMA, PRM, and LSR techniques 
have not been applied as a practical alternative technology to 
the existing approaches in Ghana. This present study for the 
first time explored the utilization of the aforementioned 
techniques for the study area. To achieve the aim of this 
present study, all methods were applied. This study also 
highlights the comparison between ANN techniques to 

classical regression techniques. The statistical findings of 
these models will reveal their working efficiency and 
capabilities of the models for ellipsoidal heights 
determination. Hence this study will serve as an added 
contribution to existing knowledge of Artificial Intelligence 
and classical regression in mathematical geodesy. The 
purpose of this study is to propose a novel technique for 
ellipsoidal heights predictions and compare the model with 
classical regression techniques for the study area. The present 
study was conducted in the Greater Kumasi Metropolitan 
Assembly Local Geodetic Reference Network, Ghana which 
happens to be the study area.  

 
 
 

 
 

Fig. 3. Contour map of study area 
 
 
 

This study for the first time in Ghana, applied and assess the 
performance of soft computing techniques and conventional 
techniques as an effective reliable tool for modelling 
ellipsoidal heights in the study area. Each model technique 
was assessed based on performance criteria indices such as 
AME, AMSE, minimum and maximum residual value, and 
ASD.  
 
Also, the method of hypothesis testing (F and t Test) statistics 
was employed using the level of significance to determine the 
likelihood that a statement (often related to the mean or 
variance of a given distribution) is true or not (Massey snd 
Miller, 2004). This was done to verify whether there is a 
significant difference between the measured and predicted 
ellipsoidal heights, thereby testing the efficacy of the applied 
methods. This study will therefore create the opportunity for 
researchers in Ghana to know the performance of using soft 
computing techniques in solving some of the problems 
related to heights issues in the country. The authors were 
motivated to embark on this study since the aforementioned 
techniques is yet to be conducted in Ghana. 

2. Resources and Methods Used 
The GKMA is situated in the Ashanti Region, Ghana; 
comprises of the inner Kumasi and other neighboring 
municipalities and districts such as; Kwabre East, Afigya 
Kwabre Districts, Atwima Kwanwoma, Atwima Nwabiagya 
Districts, Asokore Mampong, Ejisu-Juaben and Bosomtwe 
District. It is geographically located between latitudes 6⁰ 
35`N and 6⁰ 40`S and longitudes 1⁰ 30`W and 1⁰ 35`E with 
elevations ranging from about 250 to 350 meters above sea 
level (Acheamfour and Tetteh, 2014). It covers a total land 
area of 2,603km² with a total population of 3,190,473 (Oduro 
et al., 2014). The topography is undulating, traversed by a 
major river (Owabi) and streams like Subin, Wiwi, Sisai, 
Aboabo and Nsuben (Acheamfour and Tetteh, 2014; Atayi 
et al., 2018).  
 
The horizontal geodetic datum of the study area is the War 
Office 1926 ellipsoid, and the vertical datum is the Mean Sea 
Level (MSL) which approximate the geoid (Peprah and 
Mensah, 2017) (Peprah and Kumi, 2017). The type of 
coordinate system used in the study area is Ghana projected 
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grid derived from the Transverse Mercator with 1º W Central 
Meridian and the World Geodetic System 1984 (WGS84) 
(UTM Zone 30N) (Yakubu et al., 2018). The Metropolis falls 
within the wet sub-equatorial type. The average minimum 
temperature is about 21.5 ⁰C and the maximum average 
temperature is about 30.7 ⁰C; the average humidity is around 
84.16% at sunrise and 60% at sunset (Atayi et al., 2018).  
 
The study area experience a double maxima rainfall regime 
which is about 214.3 mm in June and 165.2 mm in September 
(Acheamfour and Tetteh, 2014). The Metropolis lies in the 
transitional forest zone specifically within the moist semi- 

deciduous South-East Ecological Zone (Acheamfour and 
Tetteh, 2014). The study area is dominated by the middle 
Precambrian rock; two main lithostratigraphic/lithotectonic 
complexes, namely: the Paleoproterozoic supracrustal and 
intrusive rocks, and the Neoproterozoic to early Cambrian 
lithologically diverse platform sediments, exist in the study 
area; the unique geological structure  has led to the 
development of the construction industry in the Metropolis 
with few small-scale mining activities and the proliferation of 
stone quarrying and sand winning Industries (Osei-Nuamah 
and Appiah-Adjei, 2017). Fig. 1 represents a map of the 
distribution of control points in the study area. 

 
 
 

 
 

Fig. 4. Descriptive statistics of measured heights 
 
 
 

Primary data used for the studies comprises of topographic 
data obtained from a survey in the Ghana urban water supply 
project in the GKMA. The sample data consists of 1107 
control points collected with Real Time Kinematics (RTK) 
GPS instruments. The data comprise of three-dimensional 
coordinates namely eastings, northings, and ellipsoidal 
heights denoted as (E, N, h) were recorded using the RTK 
GPS instrument for the selected controls of the study area.   
 
Figs. 2 and 3 depict the three-dimensional terrain model (3D) 
and contour map of the area respectively. Fig. 4 represents 
the summary report of the descriptive statistics of the GPS 
measured ellipsoidal height (h). Fig. 5 shows a structure of a 
modular neural network. 
 
2.1. Methods 
2.1.1. BPANN 
BPANN is an effective multilayer perceptron (MLP) model 
(Yilmaz et al., 2017) and is widely used due to its simple 
implementation (Yakubu et al., 2018). BPANN consists of 
one input layer with M inputs, one hidden layer with q units 
and one output layer with n outputs (Mihalache, 2012). The 
M inputs in this study were the 3D coordinates 𝑁 , , 𝐸 , , 𝐻 , , 

the q units were achieved by a trial and error training in 
changing number of hidden neurons, and the n outputs were 
the estimated ellipsoidal heights (hi) achieved by the BPANN 
model. The output of the model (yi) with a single output 
neuron is represented by Equation 1 (Mihalache, 2012; 
Ziggah, 2017) as: 
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where Wj is the weight between the hidden layer and the 
output layer, wj,i is the weight between the input layer and the 
hidden layer and xi is the input parameter.  
 
In this study, the selected input and output variables were 
normalized into the interval [-1, 1] using Equation 2 given as 
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where 𝑍(𝑖) represents the normalized data, 𝑥  is the measured 
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coordinate values, while 𝑥  and 𝑥  represent the 
minimum and maximum value of the measured coordinates 
with 𝑦  and 𝑦  values set at 1 and -1, respectively. 
 
The optimal model was obtained based on the lowest AME, 
AMSE, minimum residual error (𝑟 ), maximum residual 
error (𝑟 ) and ASD. Their mathematical expression is 
defined in model performance assessment section.  
 
The present study adopted one hidden layer in the BPANN. 
This decision was in line with literature and conclusion made 
by Hornik et al. (1989) that the BPANN with one hidden 

layer could be used  globally as an approximation for any 
discrete and continuous functions. Furthermore, to introduce 
non-linearity into the network, the hyperbolic tangent 
activation function was selected for the hidden units, while a 
linear function was applied for the output units. The 
hyperbolic tangent function is defined by Equation 3 (Yonaba 
et al., 2010) as: 
 

1
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where; x is the sum of the weighted inputs. 

 
 
 

 
 

Fig. 5. A Structure of a modular neural network (El-Rabbany et al., 2015) 
 
 
 

2.1.2. RBFANN 
RBFANN model is an unsupervised learning algorithm 
which is constructed based on functional approximation. It 
consists of three functionally distinct layers namely; an input 
layer, a hidden layer and an output layer. The input layer is 
made up of sensory units that connect the network to its 
environment. In the second layer, the only hidden layer in 
the network applied a non-linear transformation from the 
input space to the hidden space.  
 
The output layer is linear, supplying the response of the 
network to the activation pattern applied to the output layer. 
In this study, the input and output variables were the 3D 
coordinates denoted as (N, E, h) and (h) respectively. The 

dataset used for the formulation of the model were divided as 
training data which consist of 45 % of the total dataset and 
testing data which consists of 55 % of the total data set. 
RBFANN is an exact interpolator (Erdogan, 2009), hence a 
linear function is used in the input neurons and the 
connection between the input and hidden layers are not 
weighted (Kaloop et al., 2017). In this presented study, the 
Gaussian Function is applied, and the output neuron is a 
summation of the weighted hidden output layer given by 
Equation 4 (Erdogan, 2009) as: 
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where n is the number of hidden neurons, 𝑥 ∈  𝑅  is the 
input, к are the output layer weights of the radial basis 
function network, 𝜒 (𝑥) is Gaussian radial basis function 
given by Equation 5 as (Idri et al., 2010; Srichandan, 2012): 
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where 𝑐 ∈  𝑅  and 𝜎 are the centre and width of jth hidden 

neurons respectively,  denotes the Euclidean distance. 
 
2.1.3. GRNN 
GRNN which was first introduced by Specht (1991) is a 
different kind of RBFANN, which is built on Kernel 

regression network (Hannan et al., 2010) with one pass 
learning algorithm and highly parallel structure (Dudek, 
2011). GRNN consist of four layers namely; input layer, 
pattern layer (radial basis layer), summation layer, and 
output layer. In this study, the input variables (independent 
datasets) were the Northings, Eastings, and ellipsoidal height 
denoted as (𝑁 , , 𝐸 , , 𝐻 , ) and the output variables 
(dependent datasets) were the ellipsoidal height denoted 
as(ℎ , ). The number of input units in the first layer depends 
on the total number of the observational parameters. The first 
layer is connected to the pattern layer and in this layer, each 
neuron is being presented by a training pattern and its output. 
The pattern layer is connected to the summation layer. The 
summation layer consists of two different types of summation 
namely, single division unit and summation unit (Hannan et 
al., 2010).  

 
 
 

 
 

Fig. 6. Moving Average graph of ARIMA model 
 
 
 

The summation with output layer combined perform a 
normalization of output datasets. In training of the network, 
radial basis and linear activation functions are used in hidden 
and output layers. Each pattern layer unit is connected to two 
neurons in the summation layer. One neuron unit computes 
the sum of the weighted response of the pattern, and the other 
neuron unit computes unweighted outputs of pattern 
neurons.  
 
The output layer divides the output of each neuron unit by 
each other yielding the estimated output variables. In this 
present study, the Gaussian Function is applied, and the 
output neuron is a summation of the weighted hidden output 
layer given by Equation 6 (Erdogan, 2009) as: 
 





n

j
jj xxy

1

)()( 
 

(6) 

 
where n is the number of hidden neurons, 𝑥 𝜖 𝑅  is the input, 
𝑘 are the output layer weights of the radial basis function 

network, 𝜒 (𝑥) is Gaussian radial basis function given by 
Equation 7 as (Idri et al., 2010; Srichandan, 2012): 
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where 𝑐  𝜖 𝑅  and 𝜎 are the centre and width of jth hidden 

neurons respectively,  denotes the Euclidean distance. 
 
2.1.4. PRM 
In this study, a polynomial mathematical model was adopted 
to model and predict the ellipsoidal height values. The 
horizontal coordinates (N, E) was used as the independent 
variables. The general expression of an m-degree polynomial 
interpolation is given by Equation 8 denoted as (Yilmaz et al., 
2017): 
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where 𝑍( , ) is the ellipsoidal height information of the point 
with known horizontal coordinates (N, E) and 𝑎 ,  is the 
unknown polynomial coefficients to be estimated, (𝑖, 𝑗 =
0, … , 𝑚). The Simple Planar (SP) polynomial model was 
adopted in this study due to its efficiency and performance in 
estimating local heights as recommended by (Dawod et al., 
2022; Peprah and Kumi, 2017). The general SP polynomial 
model is denoted by Equation 9 given as: 
 

EaNaaZ oij 21   (9) 
 
where; 𝑍  is the estimated ellipsoidal heights, (𝑁, 𝐸) are the 
horizontal coordinates of the stationary positions, 𝑎 ,  are the 
unknown parameters that can be determined using least 
square approach. 
 
2.1.5. ARIMA 
The ARIMA model introduce by Box and Jenkins  (1976) is 
widely applied in time series forecasting. This type of model 
is a hybridized model which consists of autoregressive (AR) 
and moving average (MA), respectively (Yakubu et al., 
2018). In ARIMA (p, d, q) modelling, the first step is to check 
the stationarity of the time series data. When the used time 
series data is not stationary, it has to be transformed into a 
stationary time series by applying the appropriate order of 

differencing d. The desired values of AR order p and MA q is 
acquired by checking the autocorrelation function and partial 
autocorrelation function of the time series data (Yusof et al., 
2013). The AR (p) model is a discrete time linear equation 
with noise as expressed by Equation 10 given as (Yakubu et 
al., 2018): Fig. 6 depicts the moving average graph of the 
ARIMA model. 
 

tptptt    11  (10) 
 

where  t is the current forecasted model, p is the order,  1

, p,  are the parameters of coefficients of the model formed, 

ptt   ,1 are the previous observations, and t is the error of the 
forecast.  
 

The MA (q) model is an explicit formula for t in terms of 
noise as given by Equation 11: 
 

ptpttt    11  (11) 
 

The difference operator ∆ is given by Equation 12: 
 

tttt L  )1(1    (12) 

 
 

 
 

Fig, 7. RBFANN Contour map of the area 
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Fig. 8. RBFANN 3D Surface model of the area 
 
 
 

 
 

Fig. 9. Box plot statistics on RBFANN model 
 
 
 

The ARIMA model with orders (p, d, q) is given by Equation 
13 as: 
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where 
jL is the time lag operator, t is an error term, and id

is the order of integration. 
 
2.1.6. LSR 
LSR method is a statistical technique that is capable of 
determining the line of best fit of a model and seeks to find 
the minimum sum of the squares of residuals. This method is 
extensively used in regression analysis and estimation 

(Miller, 2006; Peprah and Mensah, 2017). Considering a 
system of equations in the form as denoted by Equation 14 to 
be solved by least squares: 
 

𝐷𝑍 ≈ 𝐿  (14) 
 
where; nmLXD RRR

dmdnnm  
,,,

(Annan et al., 2016; Schaffrin, 2006). D is the design matrix, 
Z is the matrix of the unknown parameters and L is the 
observation matrix. The solution of the unknown parameters 
matrix Z by ordinary least square approach can be achieved 
as denoted by Equation 15: 
 

𝑍 =  [𝐷 𝐷] [𝐷  𝐿] (15) 
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The corresponding error vector V can be achieved by using 
Equation 16: 
 

V = DZ - L (16) 
 
2.2. Model performance assessment 
In order to determine the accuracies of the models being 
used, statistical error analysis was carried out. The statistical 
indicators applied were the AME, AMSE, rmin and rmax and 
ASD. Their mathematical expressions are given by Equation 
17 to Equation 21 respectively as: 
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where, n is the total number of the observations, 𝛼  and 𝛽  are 
the measured and predicted ellipsoidal heights from the 
various techniques, 𝜇 denote the residual between the 
measured and estimated ellipsoidal height, 𝜇 is the mean of 
the residual and i is an integer varying from 1 to n. 
 
2.3. Hypothesis testing (F, t Test) 
The method of hypothesis testing employs tests of 
significance to determine the likelihood that a statement 
(often related to the mean or variance of a given distribution) 
is true, and at what instance will statisticians accept the 
statement as true (Massey and Miller, 2004). F statistics refers 
to the ratio between the variances or mean squares of two 
independent data sets (Kumar Singh, 2015). The purpose is 
to determine whether there is a significant difference between 
the variances or precision of the data (Sureiman and 
Mangera, 2020).  
 
A t Test is a parametric test that is used to compare the means 
of two groups (Kim, 2015). The reason is to verify whether 
there is a significant difference between the means of 
independent sample data (Ugoni and Walker, 2014).  
 
Also, according to the central limit theorem, the means of a 
random sample of size, n, from a population with mean, μ, 
and variance, 𝜎 , distribute normally with mean, μ and 
variance, 𝜎 /n (Kwak and Kim, 2017). Hence, the parametric 
test can be applied on the large data sample (n > 30). Using α 
= 0.05 as the significance level (Massey and Miller, 2004), 
the hypothesis test can be expressed as; 
 

𝐻  =  𝑆 −  𝑆 ; 𝜇 −  𝜇 = 0 (22) 
 

𝐻  =  𝑆 ≠  𝑆 ; 𝜇 ≠  𝜇  (23) 

where; HO is the null hypothesis; HA is the alternative 
hypothesis. 
 
The test of significance using F test is denoted by (Kumar 
Singh, 2015); 
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Under the assumption that the two samples display a normal 
distribution and have an equal variance (Kim, 2015; Massey 
and Miller, 2004), the t statistic is as follows: 
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where; 
 

 𝑆 =
( ) ( )

 (26) 

 
where; 𝑆 >  𝑆 ; 𝑆  and 𝑆   are the respective variances of the 
first and second samples; μa and μb are the respective means 
of the first and second samples; Zi is the value of an 
observation or measured value; 𝑧̅ is the mean value of all 
observations, 𝑧̅ and 𝑧̅ are the first and second sample data; 
n is the number of observations; (na-1) and (nb-1) are the 
degrees of freedom of the larger and smaller variance 
respectively. 
 
In a two-tailed hypothesis test (Massey and Miller, 2004), 
the critical region is defined as;  
 

  
 (27) 

 
3 Results and Discussions 
3.1 Developing of ANN models 
A single layer BPANN model was trained using Bayesian 
Regularization (BR) learning algorithm. Tansig and Purelin 
functions were both used for the hidden and output layer 
when training BPANN model with BR respectively.  
 
The optimal model structure, which is highly dependent on 
the number of hidden neurons was achieved through a 
sequential trial and error approach based on the lowest AME, 
AMSE, rmax, rmin, and ASD.  
 
In this present study, the model was trained varying the 
number of hidden neurons from 1 to 50. The network was 
allowed to train for 1000 epochs with a learning rate of 0.03, 
and momentum coefficient of 0.7 for each iterative training 
process.  
 
In the case of GRNN and RBFANN model training, both 
models’ output is highly based on the value of the width 
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parameter (spread constant). Therefore, the optimal width 
parameter value for GRNN and RBFANN were also 
achieved based on a sequential trial and error approach for 

each iterative training process. Moreover, a gradient descent 
rule was implemented to train both GRNN and RBFANN 
models. 

 
 
 

 
 

Fig. 10. BPANN Contour map of the area 
 
 
 

 
 

Fig. 11. BPANN 3D Surface model of the area 
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Fig. 12. Box plot statistics on BPANN model 
 
 
 

The ANN models (BPANN, GRNN, and RBFANN) were 
coded and implemented in MATLAB (R2014a) software. 
After several trial and error method, the optimal model 
achieved by the BPANN model after successive iterative 
training was [3 10 1] thus, 3 input variables (independent 
dataset), 10 hidden neurons and 1 output variable (dependent 
dataset). Moreover, the optimal GRNN predictive model 

with the least statistical assessment values had a spread 
parameter of 0.9. This was achieved by varying the spread 
parameter (from 0 to 1) in each iterating training until the best 
results was achieved. Also, this implies that, the best optimal 
model achieved by the GRNN model is [3 0.9 1]. Thus, 3 
input variables (independent variables), a spread constant of 
0.9, and 1 output (dependent variables). 

 
 
 

 
 

Fig. 13. GRNN Contour map of area 
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Fig. 14. GRNN 3D Surface model of area 
 
 
 

 
 

Fig. 15. Box plot statistics on GRNN model 
 
 
 

The optimal RBFANN was achieved by varying the spread 
parameter (from 0 to 1) in each iterating training until the best 
results was achieved. Also, this implies that, the best optimal 
model achieved by the RBFANN model is [3 0.9 1]. Thus, 3 
input variables (independent variables), a spread constant of 
0.9, and 1 output dependent variable. This optimal 
RBFANN model structure gave the lowest minimum value 
in terms of their statistical analysis (lowest AME, lowest 
AMSE, and lowest ASD).  
 
Figs. 7, 8, 10, 11, 13 and 14 show the contour map and 3D 

surface model of the study area achieved by the ANN models 
(BPANN, RBFANN, and GRNN) respectively. The figures 
shown revealed the superiority of the models in estimating 
local ellipsoidal heights when validated with the actual 
existing model (Figs. 2 and 3). All the ANN models 
(BPANN, RBFANN, and GRNN) truly represent the surface 
model of the area. The summarized results of the training and 
testing by all the soft computing techniques is represented by 
the Table 1. Based on the statistical results tabulated in Table 
1, it can be observed that soft computing techniques provide 
satisfactory results in estimating local ellipsoidal heights with 
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much better accuracy for the study area. The minimum and 
maximum residuals are very quiet encouraging. The 
arithmetic mean error (AME), arithmetic mean square error 
(AMSE), and arithmetic standard deviation (ASD) of both 

training and testing are quite good and very much 
encouraging. However, ANN has proven to be a powerful 
realistic alternative tool in computing local ellipsoidal heights 
for the study area with much better accuracy. 

 
 
 

Table 1. Model results for Soft Computing Techniques (units in meters) 
 

Training Results 

PCI GRNN BPANN RBFANN 
rmax 0.1905 8.3478 x 10-04 4.0359 x 10-12 
rmin -0.4539 -1.2299 x 10-03 -5.9686 x 10-12 
AME 6.9761 x 10-04 -6.3820 x 10-07 -4.1496 x 10-14 
AMSE 2.4333 x 10-04 2.0365 x 10-10 8.6095 x 10-25 
ASD 0.1087 2.0424 x 10-04 6.2690 x 10-13 
Testing Results 

PCI GRNN BPANN RBFANN 

rmax 0.5327 6.1589 x 10-04 3.0127 x 10-12 
rmin -0.5967 -1.2215 x 10-04 -1.0232x 10-12 
AME -9.4249 x 10-04 -3.3938 x 10-06 3.9828 x 10-14 
AMSE 5.4249 x 10-04 6.9914 x 10-09 9.6603 x 10-25 
ASD 0.1131 1.8962 x 10-04 3.5547 x 10-13 

 
 
 

Table 2. Least Square Regression Coefficients Results (units in meters) 
 

Coefficients Value 

a0 7.03331 x 1002 
Ni 0.0078 
Ei 0.0094 

 
 
 

 
 

Fig. 16. PRM Contour map of area 
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Fig. 17. PRM 3D Surface model of area 
 
 
 

3.2. Developing the classical regression models 
In formulating the PRM model, a statistical description of the 
data was performed by using the Minitab 19 software to find 
the correlation between the independent variables (input 
datasets) and the dependent dataset (output datasets). The 
optimal PRM equation generated by the Minitab software for 
estimating the ellipsoidal heights is given by Equation 27 as: 
 

 (27) 

where; Z (i) is the dependent variables (Ellipsoidal heights), 
{703, 0.007839, 0.009431} are the generated unknown 
parameters by the Minitab software. The final estimated Z (i) 
values with the given equation and parameters were coded 
and implemented in MATLAB environment. Moreover, in 
developing an optimal ARIMA model using the MATLAB 
software, non-stationarity which existed in the observed data 
which will results in wrong statistical inferences was resolved 
by differencing the data to ensure that the data is stationary.

 
 
 

 
 

Fig. 18. Box plot statistics of PRM 
 
 
 

In this study, ARIMA (0, 1, 1) model was the optimal model 
been developed from the observed stationary field data to 
predict the ellipsoidal heights for the study area. The solution 

to the least squares methods in estimating the unknown 
parameters of the LSR model was coded and implemented in 
MATLAB.  

))(009431.0())(007839.0(703)( iEiNiZ 
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Table 2 is the estimated unknown parameters of the LSR 
model using the Minitab software. Figs. 16, 17, 19, 20, 22 and 
23 are the contour map and 3D surface model by the classical 
regression (PRM, ARIMA and LSR) models respectively.  
 
The figures revealed that, the ARIMA model compared to 
the PRM and LSR model shown superiority in predicting the 
local ellipsoidal heights for the study area when validated 
with the existing models (Figs. 3 and 4). The achieved results 
by the ARIMA model indicates the extent of agreement 
between the observational data points and models predicted 
values. Thus, the ARIMA model had a good fit to the observe 
data (Figs. 3 and 4) than PRM and LSR model.  
 
On the basis of the results achieved in this present study, the 
classical ARIMA model outperformed the PRM and LSR 
model in predicting local ellipsoidal heights for the study area 
at the moment. Therefore, the inference made here is that, 
the ARIMA technique has demonstrated a better predictive 
performance and has a stronger efficiency in predictions of 
local ellipsoidal heights with the entire dataset than the PRM 
and LSR model.  
 
In addition to that, the ARIMA being a hybrid model thus, 
consists of the AR (p) model and the MA (q) model uses both 
the strength and weakness of AR (p) and MA (q) to 
complement each other. Also, the model is able to combine 
the AR (p) and MA (q) function estimation and nonlinear 
modelling capabilities. The superiority of the ARIMA to 
PRM and LSR model was further demonstrated when 

comparison was made between their obtained AME, AMSE, 
rmax, rmin and ASD. 
 
In Table 3, the ARIMA model achieved a promising result as 
compared to PRM and LSR. This implies that, the classical 
ARIMA model can predict accurately local ellipsoidal 
heights from the observed data for the study area than PRM 
and LSR model. 
 
3.3. Comparing the predictive performance and hypothesis results 
of the ANN models with the classical models 
BPANN predictive model with improved statistical metrics 
was observed at a structure of 3 inputs, a hidden layer with 
10 neurons, and 1 output. While the GRNN predictive model 
structure was identified as 3 inputs, a width parameter of 0.9, 
and 1 output. Similarly, the optimal RBFANN was achieved 
by varying the spread parameter (from 0 to 1) in each iterating 
training until the best results was achieved. This implies that, 
the best optimal model achieved by the RBFANN model is 
[3 0.9 1]. Thus, 3 input variables (independent variables), a 
spread constant of 0.9, and 1 output dependent variable.  
 
In the hidden layer chamber, the input layer data is received 
by means of connections that are not weighted. The data is 
then transformed by means of a non-linear activation 
function with each neuron estimating a Euclidean norm that 
depicts the distance between the inputs to the network. This 
is then inserted into a radial basis activation function which 
calculates and outputs the activation of the neuron (Kumi-
Boateng and Ziggah, 2017).  

 
 
 

 
 

Fig. 19. ARIMA Contour map of the area 
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Fig. 20. ARIMA 3D Surface model of area 
 
 
 

The Gaussian transfer function was used for the hidden layer 
of the RBFANN (Konakoglu, 2019). The optimal RBFANN 
model structure gave the lowest minimum value in terms of 
their statistical analysis (lowest AME, lowest AMSE, and 
lowest ASD).  Also, the optimal ARIMA model achieved was 
(0 1 1). The soft computing techniques (BPANN, RBFANN, 
and GRNN) have been compared to the conventional 
techniques (PRM, ARIMA and LSR) using all the data 
points. The statistical analysis is represented by Table 3. 

From Table 3, it is seen that the proposed ANN techniques 
similar satisfactory results as compared to the classical 
techniques. The reason is related to the reported statistical 
assessment. Statistical analysis of Table 3 indicates that the 
proposed ANN models’ predictions were closely related to 
the observed ellipsoidal height with a higher prediction 
accuracy. The same was observed for the ARIMA model 
with a high prediction accuracy in estimating the observed 
ellipsoidal heights at a good precision.  

 
 
 

 
 

Fig. 21. Box plot statistics on ARIMA model 
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Fig. 22. LSR Contour map of area 
 
 
 

 
 

Fig. 23. LSR 3D Surface model of area 
 
 
 

PRM and LSR models were observed to predict the 
ellipsoidal heights at a lesser accuracy. The maximum 
residual values of the conventional techniques and the soft 
computing techniques were 15.9312 m and 0.5327 m 

respectively. When comparing their statistical analysis, the 
PRM model had a minimum residual value of -12.2154 m 
and ASD of 4.0473 m. This situation agrees by the 
recommendation as represented by Chen and Hill (2005) and 
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Poku-Gyamfi (2009) that, the defects of the PRM model is 
due to the increase in order and there are distortions in the 
estimated values using the transformed parameters estimated 
by the least squares approach and the order must be kept low. 
The performance of the soft computing techniques 
outperforms the conventional techniques in estimating local 
ellipsoidal heights. Also, the lower performance of the 
classical techniques may be attributed to the unknown 

parameters used in the model in estimating the ellipsoidal 
height. After comparing the soft computing techniques to the 
conventional techniques in terms of their statistical analysis, 
the soft computing was much better as compared to the 
conventional methods in estimating local ellipsoidal heights 
for the study area. ARIMA model compared to PRM and 
LSR showed better performance in predicting the ellipsoidal 
heights for the study area.  

 
 
 

 
 

Fig. 24. Box plot statistics on LSR 
 
 
 

Table 3. Statistical Analysis of all models (units in meters) 
 

PCI rmax rmin AME AMSE 

RBFANN 4.0359 x 10-12 -5.9686 x 10-12 3.1322 x 10-15 1.0861 x 10-26 
BPANN 8.3478 x 10-04 -1.2299 x 10-03 -2.1492 x 10-06 5.1132 x 10-09 
GRNN 0.5327 -0.5967 -2.033 x 10-04 4.5746 x 10-05 
ARIMA 4.9013 -6.3007. 0.0012 0.0017 
PRM 7.7487 -12.2154 -0.0764. 6.4550 
LSR 15.9312 -4.0399 8.1007 7.2642 x 1003 

 
 
 

Fig. 25 and 26 shows the AMSE and ASD model graphs of 
all the applied techniques. The statistical hypothesis testing 
(F, t Test) employed in the study is given by Equation 22 to 
Equation 26. This was carried out to determine whether there 
is a significant difference between the means and variances of 
the measured and predicted ellipsoidal heights to further 
validate the performance of the various models. The 
hypothetical statements are expressed by Equation 22 and 23. 
The F and t statistics is denoted by Equation 24 and 25, 
respectively.  
 
The two-tailed critical region is shown by Equation 26. Table 
4 displays the results of the statistical hypothesis testing 
showing the mean, variances, standard deviation, standard 
error means, Upper and Lower limits of the 95% Confidence 
Interval (CI), F, t and their P values.  
 
From Table 4, the mean and variances of the predicted 
ellipsoidal heights using the ANN models (RBFANN, 

BPANN, and GRNN) are all equal to that of the measured 
or observed ellipsoidal heights. Hence, the need to conduct F 
and t Tests to verify whether there is truly no significant 
difference between their means and variances.  
 
For the F statistics test, the P values obtained for the ANN 
models were greater than the level of significance (p>0.05). 
This implies their variances are equal or very similar to the 
measured ellipsoidal heights, and they have less than 95% 
confidence that there is a significant difference between their 
variances, hence the null hypothesis is accepted.  
 
The order of similarity of the variances of the ANN models 
is depicted by; PRBFAAN>PBPAAN>PGRNN as displayed in Table 4. 
For the, t statistics test, the P values obtained for the ANN 
models were greater than the level of significance (p>0.05). 
This implies their means are equal or very similar to the 
measured ellipsoidal heights, and they have less than 95% 
confidence that there is a significant difference between their 
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means, so then the null hypothesis is accepted. Also, the 
order of similarity of the variances of the ANN models is 
depicted by; PRBFAAN>PBPAAN>PGRNN as displayed in Table 4.  

This can be seen by their mean and variability (upper 
quartile, lower quartile and Interquartile ranges) expressed by 
the comparative Box plots in Figs. 9, 12 and 15. 

 
 
 

 
 

Fig. 25. AMSE Graph of the models 
  
 
 

 
 

Fig. 26. ASD Graph of the models 
 
 
 

Table 4. Hypothesis Testing of all models 
 

Independent samples test 95% CI Test of significance,  05.0  

Model Mean Error mean SD Variance Lower Upper F test P (2-tailed) t Test P (2-tailed) 
RBFANN 305.42 0.14 4.64 21.53 -0.387 0.387 1 1 0 1 
BPANN 305.42 0.14 4.64 21.53 -0.387 0.387 1 0.9999 0 0.9999 
GRNN 305.42 0.14 4.64 21.53 -0.387 0.387 1 0.9853 0 0.9514 
ARIMA 305.42 0.14 4.60 21.16 -0.384 0.387 1.02 0.7538 0.01 0.933 
PRM 305.50 0.068 2.28 5.20 -0.381 0.229 4.16 6.39 x 10-115 -0.05 0.623 
LSR 297.32 0.068 2.27 5.16 7.796 8.405 4.19 3.50 x 10-116 52.15 0 

 
 
 

From Table 4, the ARIMA model achieved the same mean 
as the observed ellipsoidal height but a slight difference in 
their variance. For confirmation, the F and t tests were 
performed; the achieved P value using the F statistics shows 
a similarity in variance with the measured ellipsoidal heights 

but is lower compared to those achieved by the ANN models. 
For the t Test, the achieved P values were also greater than 
the level of significance but lower than that of the ANN 
models, hence the null hypothesis was accepted for both tests. 
This can be seen in the Box plot shown by Fig. 21. The PRM 
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model achieved a similar mean but a lower variance 
compared to that of the observed ellipsoidal heights; the 
achieved P value using the F statistics shows a vast significant 
difference in variance with the measured ellipsoidal heights 
and the ANN models as seen in Table 4. Hence, the null 
hypothesis is rejected and the alternative hypothesis is 
accepted. In order to perform t Tests the condition of equal 
or similar variance needs to be satisfied (Kim, 2015).  
 
The PRM model have unequal variance with the observed 
heights, but on the basis of assumption of equal variance the 
obtained P value using the t Test shows a similarity between 
the means (p>0.05) which is still lower than that of the 
ARIMA and ANN models; hence the null hypothesis is 
accepted. The mean and behavior of the variance of the PRM 
model is depicted by Fig. 18. Under the assumption that the 
two samples display a normal distribution and have an equal 
variance (Kim, 2015; Massey and Miller, 2004);  the F and t 
Test were also performed on the LSR model.  
 
From Table 4, the achieved means and variance of the LSR 
model were different from those of the observed ellipsoidal 
height; this was verified using the F and t statistics. The P 
values obtained using both test statistics shows a vast 
significant difference (p<0.05) between the means and 
variances of the LSR model and that of the observed height 
and ANN models; therefore, the null hypothesis is rejected 
and the alternative hypothesis is accepted. The mean and 
variability results of the LSR model is displayed in Fig. 24.  
 
From Figs. 18 and 24, The average sample variability of the 
measured heights is higher than the average sample 
variability achieved by the PRM and LSR models 
respectively with a lower mean achieved by the LSR model. 
The results achieved so far implies, the ANN models 
(RBFANN, BPANN and GRNN) predicted heights with 
greater accuracy and precision than those achieved by the 
classical models (ARIMA, PRM and LSR). 
 
4 Conclusion 
Ellipsoidal height studies have become obligatory in 
establishing a vertical geodetic reference network for 
measuring vertical distance. The h which has physical 
meaning is adopted for engineering and mapping purposes. 
This study applies and assess the performance of soft 
computing techniques namely, GRNN, BPANN, GRNN to 
conventional techniques namely, PRM, ARIMA and MLR 
in estimating local ellipsoidal heights for the GKMA local 
geodetic reference datum. After comparing the soft 
computing techniques to the conventional methods based on 
their statistical analysis and hypothesis testing, it was 
revealed that the soft computing techniques outperform the 
conventional methods in estimating a local ellipsoidal height 
for the area. RBFANN and BPANN compared to GRNN, 
PRM, ARIMA, and LSR, showed superiority in estimating 
the heights with much accuracy and precision. We conclude 
that, utilizing soft computing techniques in estimating local 
ellipsoidal heights for the study area have proven to be an 
alternative realistic technique to the conventional techniques. 
These techniques will help geospatial professionals within the 
study area catchment and Ghana to know the efficacy of 

utilizing soft computing techniques in estimating a precise 
ellipsoidal height for geodetic purposes. However, more 
work should be done in Ghana utilizing other soft computing 
techniques which were not considered in this study such as 
deep learning Convolutional Neural Networks (CNN), Least 
Squares Support Vector Machines, Extreme Learning 
Machine to classical improve regression techniques such as 
Gaussian regression and Kernel Ridge Regression to evaluate 
its effectiveness for larger engineering projects since the 
classical techniques of obtaining vertical distances are costly, 
time consuming and laborious. The propose models could be 
adopted for estimating heights for topographical mapping to 
generate Digital Elevation Models (DEM) and also for 
surface volume computations which requires less accuracy. 
This study will create the opportunity for geodesist in Ghana 
to know the efficiency of soft computing techniques in 
solving some problems related to heights issues in geodesy. 
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